हिंदी

The function f(x) = cot−1 x + x increases in the interval - Mathematics

Advertisements
Advertisements

प्रश्न

The function f(x) = cot−1 x + x increases in the interval

विकल्प

  • (1, ∞)

  • (−1, ∞)

  • (−∞, ∞)

  • (0, ∞)

MCQ

उत्तर

(−∞, ∞)

\[f\left( x \right) = \cot^{- 1} x + x\]

\[f'\left( x \right) = \frac{- 1}{1 + x^2} + 1\]

\[ = \frac{- 1 + 1 + x^2}{1 + x^2}\]

\[ = \frac{x^2}{1 + x^2} \geq 0, \forall x \in R\]

\[\text { So,f(x)is increasing on } \left( - \infty , \infty \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 2 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the value(s) of x for which y = [x(x − 2)]2 is an increasing function.


Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`


Show that the function `f(x) = x^3 - 3x^2 + 6x - 100` is increasing on R


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


The interval in which y = x2 e–x is increasing is ______.


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


Function f(x) = ax is increasing on R, if


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×