हिंदी

Find the Interval in Which the Following Function Are Increasing Or Decreasing F(X) = 2x3 + 9x2 + 12x + 20 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the interval in which the following function are increasing or decreasing f(x) = 2x3 + 9x2 + 12x + 20  ?

योग

उत्तर

\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]

\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]

\[f\left( x \right) = 2 x^3 + 9 x^2 + 12x + 20\]

\[f'\left( x \right) = 6 x^2 + 18x + 12\]

\[ = 6 \left( x^2 + 3x + 2 \right)\]

\[ = 6 \left( x + 1 \right)\left( x + 2 \right)\]

\[\text { For }f(x) \text { to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow 6 \left( x + 1 \right)\left( x + 2 \right) > 0\]

\[ \Rightarrow \left( x + 1 \right)\left( x + 2 \right) > 0 \left[ \text { Since } 6 > 0, 6 \left( x + 1 \right)\left( x + 2 \right) > 0 \Rightarrow \left( x + 1 \right)\left( x + 2 \right) > 0 \right]\]

\[ \Rightarrow x < - 2 \ or \ x > - 1\]

\[ \Rightarrow x \in \left( - \infty , - 2 \right) \cup \left( - 1, \infty \right)\]

\[\text { So },f(x)\text { is increasing on } x \in \left( - \infty , - 2 \right) \cup \left( - 1, \infty \right).\]

\[\text { For }f(x) \text { to be decreasing, we must have }\]

\[f'\left( x \right) < 0\]

\[ \Rightarrow 6 \left( x + 1 \right)\left( x + 2 \right) < 0\]

\[ \Rightarrow \left( x + 1 \right)\left( x + 2 \right) < 0 \left[ \text { Since } 6 > 0, 6 \left( x + 1 \right)\left( x + 2 \right) < 0 \Rightarrow \left( x + 1 \right)\left( x + 2 \right) < 0 \right]\]

\[ \Rightarrow - 2 < x < - 1 \]

\[ \Rightarrow x \in \left( - 2, - 1 \right)\]

\[\text { So, }f(x)\text { is decreasing on }x \in \left( - 2, - 1 \right) .\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 1.1 | पृष्ठ ३३

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


The function f(x) = x9 + 3x7 + 64 is increasing on


The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 ,  Interpret your result. 


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


The slope of tangent at any point (a, b) is also called as ______.


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.

Solution: f(x) = 2x3 – 15x2 – 84x – 7

∴ f'(x) = `square`

∴ f'(x) = 6`(square) (square)`

Since f(x) is decreasing function.

∴ f'(x) < 0

Case 1: `(square)` > 0 and (x + 2) < 0

∴ x ∈ `square`

Case 2: `(square)` < 0 and (x + 2) > 0

∴ x ∈ `square`

∴ f(x) is decreasing function if and only if x ∈ `square`


For which interval the given function f(x) = 2x3 – 9x2 + 12x + 7 is increasing?


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


y = x(x – 3)2 decreases for the values of x given by : ______.


2x3 - 6x + 5 is an increasing function, if ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


y = log x satisfies for x > 1, the inequality ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

The function f(x) = x3 + 3x is increasing in interval ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×