Advertisements
Advertisements
प्रश्न
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
उत्तर
f(x) = x3 – 6x2 – 36x + 7
∴ f′(x) = 3x2 – 12x – 36
= 3(x2 – 4x – 12)
= 3(x – 6)(x + 2)
f(x) is strictly increasing, if f′(x) > 0
∴ 3(x – 6)(x + 2) > 0
∴ (x – 6)(x + 2) > 0
ab > 0 ⇔ a > 0 and b > 0 or a < 0 and b < 0
Either x – 6 > 0 and x + 2 > 0
or
x – 6 < 0 and x + 2 < 0
Case I: x – 6 > 0 and x + 2 > 0
∴ x > 6 and x > – 2
∴ x > 6
Case II: x – 6 < 0 and x + 2 < 0
∴ x < 6 and x < – 2
∴ x < – 2
Thus, f(x) is strictly increasing for x ∈ (−∞ −2) ∪ (6, ∞).
APPEARS IN
संबंधित प्रश्न
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function `f(x) = x^4/4 - x^3 - 5x^2 + 24x + 12` is (a) strictly increasing, (b) strictly decreasing
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function f(x) = xx decreases on the interval
If the function f(x) = 2x2 − kx + 5 is increasing on [1, 2], then k lies in the interval
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = cos x − 2 λ x is monotonic decreasing when
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Function f(x) = ax is increasing on R, if
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
The consumption expenditure Ec of a person with the income x. is given by Ec = 0.0006x2 + 0.003x. Find MPC, MPS, APC and APS when the income x = 200.
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
The total cost of manufacturing x articles is C = 47x + 300x2 − x4. Find x, for which average cost is increasing.
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Show that f(x) = x – cos x is increasing for all x.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
The slope of tangent at any point (a, b) is also called as ______.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
The function f(x) = x3 - 3x is ______.
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f(x) = tanx – x ______.
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
Let f : R `rightarrow` R be a positive increasing function with `lim_(x rightarrow ∞) (f(3x))/(f(x))` = 1 then `lim_(x rightarrow ∞) (f(2x))/(f(x))` = ______.
Let f(x) = `x/sqrt(a^2 + x^2) - (d - x)/sqrt(b^2 + (d - x)^2), x ∈ R` where a, b and d are non-zero real constants. Then ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.