рд╣рд┐рдВрджреА

Find the values of x, for which the function f(x) = x3 + 12x2 + 36ЁЭСе + 6 is monotonically decreasing - Mathematics and Statistics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

Find the values of x, for which the function f(x) = x3 + 12x2 + 36ЁЭСе + 6 is monotonically decreasing

рдпреЛрдЧ

рдЙрддреНрддрд░

f(x) = x3 + 12x2 + 36ЁЭСе + 6

∴ f′(x) = 3x2 + 24x + 36

= 3(x2 + 8x + 12)

= 3(x + 2)(x + 6)

f(x) is monotonically decreasing, if f′(x) < 0

∴ 3(x + 2)(x + 6) < 0

∴ (x + 2)(x + 6) < 0

ab < 0 ⇔ a > 0 and b < 0 or a < 0 and b > 0

∴ Either x + 2 > 0 and x + 6 < 0

or

x + 2 < 0 and x + 6 > 0

Case I: x + 2 > 0 and x + 6 < 0

∴ x > – 2 and x < – 6,

which is not possible.

Case II: x + 2 < 0 and x + 6 > 0

∴ x < – 2 and x > – 6

Thus, f(x) is monotonically decreasing for x ∈ (– 6, – 2).

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 2.2: Applications of Derivatives - Short Answers II

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [3]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = 5x3 − 15x2 − 120x + 3 ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 107  ?


Find the interval in which the following function are increasing or decreasing  f(x) = 2x3 − 24x + 7 ?


Find the interval in which the following function are increasing or decreasing  f(x) = x4 − 4x3 + 4x2 + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = tan−1 (sin x + cos x) is a decreasing function on the interval (π/4, π/2) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Write the set of values of k for which f(x) = kx − sin x is increasing on R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The function f(x) = xx decreases on the interval


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Every invertible function is


Function f(x) = ax is increasing on R, if


Let ╧Х(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ╧Х (x)


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


The function f(x) = x3 - 3x is ______.


f(x) = `{{:(0","                 x = 0 ), (x - 3","   x > 0):}` The function f(x) is ______


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


For every value of x, the function f(x) = `1/7^x` is ______ 


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


In case of decreasing functions, slope of tangent and hence derivative is ____________.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f(x) = tan-1 x is ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.


Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


y = log x satisfies for x > 1, the inequality ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


A function f is said to be increasing at a point c if ______.


The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


The function f(x) = x3 + 3x is increasing in interval ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Course
Use app×