Advertisements
Advertisements
प्रश्न
Show that the function given by f(x) = sin x is
- strictly increasing in `(0, pi/2)`
- strictly decreasing in `(pi/2, pi)`
- neither increasing nor decreasing in (0, π)
उत्तर
The given function is f(x) = sin x.
f'(x) = cos x
a. Since for each `x in (0, pi/2)`, cos x > 0, we have f'(x) > 0
Hence, f is strictly increasing in `(0. pi/2)`
b. Since for each `x in (pi/2 , pi), cos x < 0` we have f'(x) < 0
Hence, f is strictly decreasing in `(pi/2, pi)`
c. From the results obtained in (a) and (b), it is clear that f is neither increasing nor decreasing in (0, π).
APPEARS IN
संबंधित प्रश्न
Which of the following functions are strictly decreasing on `(0, pi/2)`?
- cos x
- cos 2x
- cos 3x
- tan x
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
Which of the following functions is decreasing on `(0, pi/2)`?
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.