हिंदी

Find 'A' for Which F(X) = a (X + Sin X) + a is Increasing on R ? - Mathematics

Advertisements
Advertisements

प्रश्न

Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?

योग

उत्तर

\[f\left( x \right) = a \left( x + \sin x \right) + a\]

\[f'\left( x \right) = a \left( 1 + \cos x \right)\]

\[\text { For }f(x)\text {  to be increasing, we must have }\]

\[f'\left( x \right) > 0\]

\[ \Rightarrow a \left( 1 + \cos x \right) > 0 . . . \left( 1 \right)\]

\[\text { We know,}\]

\[ - 1 \leq \cos x \leq 1, \forall x \in R\]

\[ \Rightarrow 0 \leq \left( 1 + \cos x \right) \leq 2, \forall x \in R\]

\[\therefore a > 0 \left[ \text { From eq }. \left( 1 \right) \right]\]

\[ \Rightarrow a \in \left( 0, \infty \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.3 | Q 5 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when

 


Every invertible function is


Function f(x) = loga x is increasing on R, if


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.


Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q 


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.


For every value of x, the function f(x) = `1/7^x` is ______ 


If f(x) = x3 – 15x2 + 84x – 17, then ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f (x) = x2, for all real x, is ____________.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.


Which of the following graph represent the strictly increasing function.


Show that function f(x) = tan x is increasing in `(0, π/2)`.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×