Advertisements
Advertisements
प्रश्न
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
उत्तर
\[f\left( x \right) = a \left( x + \sin x \right) + a\]
\[f'\left( x \right) = a \left( 1 + \cos x \right)\]
\[\text { For }f(x)\text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow a \left( 1 + \cos x \right) > 0 . . . \left( 1 \right)\]
\[\text { We know,}\]
\[ - 1 \leq \cos x \leq 1, \forall x \in R\]
\[ \Rightarrow 0 \leq \left( 1 + \cos x \right) \leq 2, \forall x \in R\]
\[\therefore a > 0 \left[ \text { From eq }. \left( 1 \right) \right]\]
\[ \Rightarrow a \in \left( 0, \infty \right)\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Every invertible function is
Function f(x) = loga x is increasing on R, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
For every value of x, the function f(x) = `1/7^x` is ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f (x) = x2, for all real x, is ____________.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
The function which is neither decreasing nor increasing in `(pi/2,(3pi)/2)` is ____________.
Which of the following graph represent the strictly increasing function.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.