Advertisements
Advertisements
प्रश्न
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
उत्तर
The given function is p = `183 + 120 D – 3D^2`
∴ `(dp)/(dD)=120-6D`
Now `(dp)/(dD)`=`0⇒120-6D=0⇒D=20`
For increasing the price
`(dp)/(dD)>0`
`120-6D>0`
`-6D>-120`
`D<120/6`
`D<20`
Demand and price cannot be negative
∴ Price is increasing in the internal (0, 20).
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = log sin x is increasing on (0, π/2) and decreasing on (π/2, π) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then
Function f(x) = x3 − 27x + 5 is monotonically increasing when
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
The function f(x) = sin x + 2x is ______
Which of the following functions is decreasing on `(0, pi/2)`?
The function f (x) = 2 – 3 x is ____________.
The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.
The length of the longest interval, in which the function `3 "sin x" - 4 "sin"^3"x"` is increasing, is ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Let f: [0, 2]→R be a twice differentiable function such that f"(x) > 0, for all x ∈( 0, 2). If `phi` (x) = f(x) + f(2 – x), then `phi` is ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.