Advertisements
Advertisements
प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
उत्तर
We have f (x) = x2 + 2x - 5
f (x) is being a polynomial is continuous and derivale on R.
Differentiating w.r.t.x, we get
For increasing, f (x) >0
= 2x + 2 >0
= x > -1
For decreasing f (x) < 0
= 2x + 2 <0
= x < -1
f (x) is strictly decreasing for x <-1
f (x) is strictly increasing for x > -1
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Find the intervals in which the following functions are strictly increasing or decreasing:
6 − 9x − x2
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Show that the function f given by f(x) = 10x is increasing for all x ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Show that function f(x) =`3/"x" + 10`, x ≠ 0 is decreasing.
Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
State whether the following statement is True or False:
The function f(x) = `3/x` + 10, x ≠ 0 is decreasing
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
y = x(x – 3)2 decreases for the values of x given by : ______.
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.
Which of the following graph represent the strictly increasing function.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.