हिंदी

Show that F(X) = E1/X, X ≠ 0 is a Decreasing Function for All X ≠ 0 ? - Mathematics

Advertisements
Advertisements

प्रश्न

Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?

योग

उत्तर

\[f\left( x \right) = e^\frac{1}{x} \]

\[f'\left( x \right) = e^\frac{1}{x} \frac{d}{dx}\left( \frac{1}{x} \right)\]

\[ = e^\frac{1}{x} \left( \frac{- 1}{x^2} \right)\]

\[ = - \frac{e^\frac{1}{x}}{x^2}\]

\[\text { Here, }e^\frac{1}{x} > 0 \text { and } x^2 > 0, \text { for any real value of} x \neq 0.\]

\[\therefore f \left( x \right) = - \frac{e^\frac{1}{x}}{x^2} < 0, \forall x \in R, x \neq 0\]

\[\text { So,f(x) is a decreasing function }.\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.2 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 5 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Show that the function given by f(x) = 3x + 17 is strictly increasing on R.


Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Find the intervals in which the following functions are strictly increasing or decreasing:

6 − 9x − x2


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing  f(x) = x2 + 2x − 5  ?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that the function f given by f(x) = 10x is increasing for all x ?


Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


The function f(x) = cot−1 x + x increases in the interval


The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Solve the following:

Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.


Find the value of x, such that f(x) is increasing function.

f(x) = x2 + 2x - 5 


State whether the following statement is True or False:

The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.


Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


The function f(x) = 9 - x5 - x7 is decreasing for


The function `1/(1 + x^2)` is increasing in the interval ______ 


The function f(x) = tanx – x ______.


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


State whether the following statement is true or false.

If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×