Advertisements
Advertisements
प्रश्न
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
उत्तर
\[f\left( x \right) = \log_a x\]
\[\text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \]
\[\text { Since given function is logarithmic, either a }> 1 or 0 < a < 1 . \]
\[\text { Case 1: Let }a > 1\]
\[\text { Here },\]
\[ x_1 < x_2 \]
\[ \Rightarrow \log_a x_1 < \log_a x_2 \]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So,f}\left( x \right)\text { is increasing on }\left( 0, \infty \right).\]
\[\text { Case 2: Let }0 < a < 1\]
\[\text { Here },\]
\[ x_1 < x_2 \]
\[ \Rightarrow \log_a x_1 > \log_a x_2 \]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[ \therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { Thus, for } a > 1, f(x)\text { is increasing in its domain } . \]
APPEARS IN
संबंधित प्रश्न
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function f(x) = cot−1 x + x increases in the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Show that f(x) = x – cos x is increasing for all x.
Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is
(a) Strictly increasing
(b) strictly decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
The function f(x) = x3 - 3x is ______.
The function `1/(1 + x^2)` is increasing in the interval ______
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
The function f: N → N, where
f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is
Which of the following graph represent the strictly increasing function.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.