हिंदी

Write the Set of Values of 'A' for Which F(X) = Loga X is Increasing in Its Domain ? - Mathematics

Advertisements
Advertisements

प्रश्न

Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?

योग

उत्तर

\[f\left( x \right) = \log_a x\]

\[\text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \]

\[\text { Since given function is logarithmic, either a }> 1 or 0 < a < 1 . \]

\[\text { Case 1: Let }a  > 1\]

\[\text { Here },\]

\[ x_1 < x_2 \]

\[ \Rightarrow \log_a x_1 < \log_a x_2 \]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So,f}\left( x \right)\text {  is increasing on }\left( 0, \infty \right).\]

\[\text { Case 2: Let }0 < a < 1\]

\[\text { Here },\]

\[ x_1 < x_2 \]

\[ \Rightarrow \log_a x_1 > \log_a x_2 \]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[ \therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { Thus, for } a > 1, f(x)\text {  is increasing in its domain } . \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.3 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.3 | Q 3 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Find the intervals in which the following functions are strictly increasing or decreasing:

10 − 6x − 2x2


Find the intervals in which the following functions are strictly increasing or decreasing:

 (x + 1)3 (x − 3)3


Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].


Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


State whether f(x) = tan x − x is increasing or decreasing its domain ?


The function f(x) = cot−1 x + x increases in the interval


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then


Test whether the following functions are increasing or decreasing : f(x) = x3 – 6x2 + 12x – 16, x ∈ R.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Show that f(x) = x – cos x is increasing for all x.


Find the values of x for which f(x) = 2x3 – 15x2 – 144x – 7 is

(a) Strictly increasing
(b) strictly decreasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is


The function f(x) = x3 - 3x is ______.


The function `1/(1 + x^2)` is increasing in the interval ______ 


Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Which of the following graph represent the strictly increasing function.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×