हिंदी

Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2]. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].

योग

उत्तर

We have f (x) = x2 + ax + 1

= f' (x) = 2x + a

If 1 < x < 2

= 2 < 2x < 4

= 2 + a < 2x + a < 4 + a

= 2 + a < f' (x) < 4 + a

Now f (x) is strictly increasing on (1, 2) only if f' (x) > 0 for 1 < x < 2

= 2 + a ≥ 0

= a ≥ -2

∴ Required least value of a is -2 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Application of Derivatives - Exercise 6.2 [पृष्ठ २०६]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 6 Application of Derivatives
Exercise 6.2 | Q 14 | पृष्ठ २०६

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.


Show that y = `log(1+x) - (2x)/(2+x), x> -  1`, is an increasing function of x throughout its domain.


Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Which of the following functions are strictly decreasing on `(0, pi/2)`?

  1. cos x
  2. cos 2x
  3. cos 3x
  4. tan x

Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that f(x) = tan−1 x − x is a decreasing function on R ?


Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


The function f(x) = xx decreases on the interval


The total cost of manufacturing x articles is C = 47x + 300x2 − x4.  Find x, for which average cost is increasing.


The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Test whether the following functions are increasing or decreasing : f(x) = `(1)/x`, x ∈ R , x ≠ 0.


Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


State whether the following statement is True or False: 

If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1


For every value of x, the function f(x) = `1/7^x` is ______ 


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.


Which of the following functions is decreasing on `(0, pi/2)`?


The values of a for which the function f(x) = sinx – ax + b increases on R are ______.


The function f(x) = x2 – 2x is increasing in the interval ____________.


The function f(x) = tan-1 x is ____________.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


If f(x) = x + cosx – a then ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×