Advertisements
Advertisements
प्रश्न
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
उत्तर
\[f\left( x \right) = x^2 - x + 1\]
\[f'\left( x \right) = 2x - 1\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 2x - 1 > 0\]
\[ \Rightarrow 2x > 1\]
\[ \Rightarrow x > \frac{1}{2}\]
\[ \Rightarrow x \in \left( \frac{1}{2}, 1 \right)\]
\[\text { So,f(x)is increasing on }\left( \frac{1}{2}, 1 \right) . \]
\[\text{ For f(x) to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 2x - 1 < 0\]
\[ \Rightarrow 2x < 1\]
\[ \Rightarrow x < \frac{1}{2}\]
\[ \Rightarrow x \in \left( 0, \frac{1}{2} \right)\]
\[\text { So,f(x)is decreasing on }\left( 0, \frac{1}{2} \right).\]
\[\text { Since f(x) is increasing on } \left( \frac{1}{2}, 1 \right) \text { and decreasing on }\left( 0, \frac{1}{2} \right),f\left( x \right) \text { is neither increasing nor decreasing on } (0, 1).\]
APPEARS IN
संबंधित प्रश्न
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{x}\] is a decreasing function on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 15x2 + 36x + 1 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x ?
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Prove that the function f given by f(x) = x − [x] is increasing in (0, 1) ?
What are the values of 'a' for which f(x) = ax is decreasing on R ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
State whether f(x) = tan x − x is increasing or decreasing its domain ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 - 144x - 7
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Show that f(x) = x – cos x is increasing for all x.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.
The slope of tangent at any point (a, b) is also called as ______.
Let f(x) = x3 + 9x2 + 33x + 13, then f(x) is ______.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
The function f(x) = tan-1 x is ____________.
Which of the following graph represent the strictly increasing function.
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.