हिंदी

Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy. - Mathematics

Advertisements
Advertisements

प्रश्न

Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.

विकल्प

  •  a2 − 3b − 15 > 0

  • a2 − 3b + 15 > 0

  • a2 − 3b + 15 < 0

  • a > 0 and b > 0

MCQ

उत्तर

a2 − 3b + 15 < 0

Explanation:

\[f\left( x \right) = x^3 + a x^2 + bx + 5 \sin^2 x\]

\[f'\left( x \right) = 3 x^2 + 2ax + \left( b + 5 \sin 2x \right)\]

\[\text {Given}:f\left( x \right)\text {  is increasing on R }.\]

\[ \Rightarrow f'\left( x \right) > 0, \forall x \in R\]

\[ \Rightarrow 3 x^2 + 2ax + \left( b + 5 \sin 2x \right) > 0, \forall x \in R \]

\[\text { Since this quadratic function is >0, its discriminant is } <0.\]

\[ \Rightarrow \left( 2a \right)^2 - 4\left( 3 \right)\left( b + 5 \sin 2x \right) < 0\]

\[ \Rightarrow 4 a^2 - 12b - 60 \sin 2x < 0\]

\[ \Rightarrow a^2 - 3b - 15 \sin 2x < 0\]

\[\text { We know that the minimum value of sin 2x is−1}.\]

\[\therefore a^2 - 3b + 15 < 0 \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.4 [पृष्ठ ४०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.4 | Q 6 | पृष्ठ ४०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


The interval in which y = x2 e–x is increasing is ______.


Find the intervals in which the function f given by `f(x) = (4sin x - 2x - x cos x)/(2 + cos x)` is (i) increasing (ii) decreasing.


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


Find the values of x for which the following functions are strictly decreasing:

f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 – 15x2 – 84x – 7 


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


The price P for the demand D is given as P = 183 + 120D − 3D2, then the value of D for which price is increasing, is ______.


The function f(x) = x3 - 3x is ______.


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


The function f(x) = tan-1 x is ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


The function f(x) = x3 + 6x2 + (9 + 2k)x + 1 is strictly increasing for all x, if ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is


Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×