Advertisements
Advertisements
प्रश्न
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
उत्तर
Here f(x) = log cos x
`therefore f'(x) = 1/(cos x) (- sin x) = - tan x`
(i) In the interval `(0, pi/2)`, tan x = + ve
∴ f' (x) = - ve
Hence, f is a decreasing function.
(ii) In the interval `(pi/2, pi)`, tan x = - ve
∴ f' (x) = - tan x = - ve
Hence, f is an increasing function.
APPEARS IN
संबंधित प्रश्न
Find the intervals in which the function f(x) = 3x4 − 4x3 − 12x2 + 5 is
(a) strictly increasing
(b) strictly decreasing
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
The function f(x) = cot−1 x + x increases in the interval
Function f(x) = cos x − 2 λ x is monotonic decreasing when
f(x) = 2x − tan−1 x − log \[\left\{ x + \sqrt{x^2 + 1} \right\}\] is monotonically increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Every invertible function is
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
If the demand function is D = 50 - 3p - p2, find the elasticity of demand at (a) p = 5 (b) p = 2 , Interpret your result.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
For every value of x, the function f(x) = `1/7^x` is ______
If f(x) = x3 – 15x2 + 84x – 17, then ______.
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f(x) = tanx – x ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
Which of the following graph represent the strictly increasing function.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.