Advertisements
Advertisements
प्रश्न
The function \[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\] is increasing, if
विकल्प
λ < 1
λ > 1
λ < 2
λ > 2
उत्तर
λ > 2
\[f\left( x \right) = \frac{\lambda \sin x + 2 \cos x}{\sin x + \cos x}\]
\[f'\left( x \right) = \frac{\left( \sin x + \cos x \right)\left( \lambda \cos x - 2 \sin x \right) + \left( \lambda \sin x + 2 \cos x \right)\left( \cos x - \sin x \right)}{\left( \sin x + \cos x \right)^2}\]
\[ = \frac{\lambda\cos x \sin x + \lambda \cos^2 x - 2 \sin^2 x - 2 \sin x \cos x - \lambda\sin x \cos x - 2 \cos^2 x + \lambda \sin^2 x + 2 \cos x \sin x}{\left( \sin x + \cos x \right)^2}\]
\[ = \frac{- 2 \left( \sin^2 x + \cos^2 x \right) + \lambda \left( \sin^2 x + \cos^2 x \right)}{\left( \sin x + \cos x \right)^2}\]
\[ = \frac{- 2 + \lambda}{\left( \sin x + \cos x \right)^2}\]
\[\text { For f(x) to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow \frac{- 2 + \lambda}{\left( \sin x + \cos x \right)^2} > 0 \]
\[ \Rightarrow \lambda - 2 > 0 \left[ \because \left( \sin x + \cos x \right)^2 > 0 \right]\]
\[ \Rightarrow \lambda > 2\]
APPEARS IN
संबंधित प्रश्न
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)2 ?
Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?
Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = | x | − | x − 1 | is monotonically increasing when
Function f(x) = loga x is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The slope of tangent at any point (a, b) is also called as ______.
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
The function f(x) = x3 - 3x is ______.
f(x) = `{{:(0"," x = 0 ), (x - 3"," x > 0):}` The function f(x) is ______
Given P(x) = x4 + ax3 + bx2 + cx + d such that x = 0 is the only real root of P'(x) = 0. If P(-1) < P(1), then in the interval [-1, 1] ______
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.
The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
Which of the following graph represent the strictly increasing function.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.
The function f(x) = sin4x + cos4x is an increasing function if ______.