Advertisements
Advertisements
प्रश्न
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
विकल्प
λ = 4
λ = 2
λ = –1
λ has no real value.
MCQ
रिक्त स्थान भरें
उत्तर
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then λ = 4.
Explanation:
f(x) = x3 + 4x2 + λx + 1
Differentiating w.r.t. x, we get
f'(x) = 3x2 + 8x + λ + 0 < 0 .......(i)
Also, `x∈(–2, (–2)/3)`
⇒ `(x + 2)(x + 2/3) < 0`
⇒ `x^2 + 2x + 2/3x + 4/3 < 0`
⇒ `x^2 + 8/3x + 4/3 < 0`
⇒ 3x2 + 8x + 4 < 0 ...(ii)
Comparing equations (i) and (ii),
we get, λ = 4
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?