English

If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval (–2,–23) then ______. -

Advertisements
Advertisements

Question

If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.

Options

  • λ = 4

  • λ = 2

  • λ = –1

  • λ has no real value.

MCQ
Fill in the Blanks

Solution

If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then λ = 4.

Explanation:

f(x) = x3 + 4x2 + λx + 1

Differentiating w.r.t. x, we get

f'(x) = 3x2 + 8x + λ + 0 < 0 .......(i)

Also, `x∈(–2, (–2)/3)`

⇒ `(x + 2)(x + 2/3) < 0`

⇒ `x^2 + 2x + 2/3x + 4/3 < 0`

⇒ `x^2 + 8/3x + 4/3 < 0`

⇒ 3x2 + 8x + 4 < 0  ...(ii)

Comparing equations (i) and (ii),

we get, λ = 4

shaalaa.com
  Is there an error in this question or solution?
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×