हिंदी

Without Using the Derivative, Show that the Function F (X) = | X | Is. (A) Strictly Increasing in (0, ∞) (B) Strictly Decreasing in (−∞, 0). - Mathematics

Advertisements
Advertisements

प्रश्न

Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .

योग

उत्तर

\[\text { Here }, \]

\[f\left( x \right) = \left| x \right|\]

\[(a) \text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow \left| x_1 \right| < \left| x_2 \right|\]

\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]

\[\text { So },f\left( x \right) \text { is increasing on }\left( 0, \infty \right).\]

\[(b) \text { Let } x_1 , x_2 \in ( - \infty , 0]. \text { such that } x_1 < x_2 . \text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow \left| x_1 \right| > \left| x_2 \right|\]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in ( - \infty , 0].\]

\[\text { So },f\left( x \right) \text { is decreasing on }( - \infty , 0].\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 17: Increasing and Decreasing Functions - Exercise 17.1 [पृष्ठ १०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 8 | पृष्ठ १०

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Find the intervals in which the following functions are strictly increasing or decreasing:

x2 + 2x − 5


Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1


Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.


Find the interval in which the following function are increasing or decreasing  f(x) = 6 − 9x − x2  ?


Find the interval in which the following function are increasing or decreasing  f(x) =  \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\]  x > 0 ?


Show that the function f(x) = cot \[-\] l(sinx + cosx) is decreasing on \[\left( 0, \frac{\pi}{4} \right)\] and increasing on \[\left( 0, \frac{\pi}{4} \right)\] ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


What are the values of 'a' for which f(x) = ax is increasing on R ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?


Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


The function f(x) = x2 e−x is monotonic increasing when


Every invertible function is


Find the values of x for which the following functions are strictly increasing:

f(x) = 3 + 3x – 3x2 + x3


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Show that f(x) = x – cos x is increasing for all x.


Show that the function f(x) = x3 + 10x + 7 for x ∈ R is strictly increasing


Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`


y = x(x – 3)2 decreases for the values of x given by : ______.


Which of the following functions is decreasing on `(0, pi/2)`?


2x3 - 6x + 5 is an increasing function, if ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.


The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.


Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


In which one of the following intervals is the function f(x) = x3 – 12x increasing?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×