Advertisements
Advertisements
प्रश्न
What are the values of 'a' for which f(x) = ax is decreasing on R ?
उत्तर
\[f\left( x \right) = a^x \]
\[f'\left( x \right) = a^x \log a\]
\[\text { Given }:f\left( x \right) \text { is decreasing on R }.\]
\[ \Rightarrow f'\left( x \right) < 0, \forall x \in R\]
\[ \Rightarrow a^x \log a < 0, \forall x \in R\]
\[\text { Here, logaritmic function is not defined for negative values of a } . \]
\[ \Rightarrow a^x > 0 \]
\[ \therefore a^x \log a < 0 \text { can be possible when } \log a < 0, \forall x \in R . \]
\[ \Rightarrow 0 < a < 1\]
APPEARS IN
संबंधित प्रश्न
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \log\left( 2 + x \right) - \frac{2x}{2 + x}, x \in R\] ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.
The function f(x) = x2 e−x is monotonic increasing when
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the intervals in which the function `f("x") = (4sin"x")/(2+cos"x") -"x";0≤"x"≤2pi` is strictly increasing or strictly decreasing.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Show that f(x) = x – cos x is increasing for all x.
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
The function f(x) = 9 - x5 - x7 is decreasing for
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
If f(x) = `x^(3/2) (3x - 10)`, x ≥ 0, then f(x) is increasing in ______.
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
The function f(x) = tan-1 x is ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.