Advertisements
Advertisements
प्रश्न
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
उत्तर
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^4 - 4 x^3 + 4 x^2 + 15\]
\[f'\left( x \right) = 4 x^3 - 12 x^2 + 8x\]
\[ = 4x \left( x^2 - 3x + 2 \right)\]
\[ = 4x \left( x - 1 \right)\left( x - 2 \right)\]
\[\text { Here, 0, 1 and 2 are the critical points }.\]
\[\text { The possible intervals are }\left( - \infty , 0 \right),\left( 0, 1 \right),\left( 1, 2 \right)\text { and }\left( 2, \infty \right). ...(1)\]
\[\text { For f(x) to be increasing, we must have}\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 4x \left( x - 1 \right)\left( x - 2 \right) > 0 \left[ \text { Since } 4 > 0, 4x \left( x - 1 \right)\left( x - 2 \right) > 0 \Rightarrow x \left( x - 1 \right)\left( x - 2 \right) > 0 \right]\]
\[ \Rightarrow x \left( x - 1 \right)\left( x - 2 \right) > 0\]
\[ \Rightarrow x \in \left( 0, 1 \right) \cup \left( 2, \infty \right) \left[ \text { From eq }. (1) \right]\]
\[\text { So },f(x)\text { is increasing on x } \in \left( 0, 1 \right) \cup \left( 2, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 4x \left( x - 1 \right)\left( x - 2 \right) < 0 \left[ \text { Since } 4 > 0, 4x \left( x - 1 \right)\left( x - 2 \right) < 0 \Rightarrow x \left( x - 1 \right)\left( x - 2 \right) < 0 \right]\]
\[ \Rightarrow x \left( x - 1 \right)\left( x - 2 \right) < 0\]
\[ \Rightarrow x \in \left( - \infty , 0 \right) \cup \left( 1, 2 \right) \left[ \text { From eq. } (1) \right]\]
\[\text { So,}f(x)\text { is decreasing on x } \in \left( - \infty , 0 \right) \cup \left( 1, 2 \right) .\]
APPEARS IN
संबंधित प्रश्न
Test whether the function is increasing or decreasing.
f(x) = `"x" -1/"x"`, x ∈ R, x ≠ 0,
Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is
- Strictly increasing
- Strictly decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Let I be any interval disjoint from (−1, 1). Prove that the function f given by `f(x) = x + 1/x` is strictly increasing on I.
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Find the interval in which f(x) is increasing or decreasing f(x) = sinx(1 + cosx), 0 < x < \[\frac{\pi}{2}\] ?
What are the values of 'a' for which f(x) = ax is increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
The function f(x) = xx decreases on the interval
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Show that f(x) = x – cos x is increasing for all x.
Find the values of x, for which the function f(x) = x3 + 12x2 + 36𝑥 + 6 is monotonically decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?
The function `1/(1 + x^2)` is increasing in the interval ______
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f(x) = x2 – 2x is increasing in the interval ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
Let f(x) be a function such that; f'(x) = log1/3(log3(sinx + a)) (where a ∈ R). If f(x) is decreasing for all real values of x then the exhaustive solution set of a is ______.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
If f(x) = `x/(x^2 + 1)` is increasing function then the value of x lies in ______.