Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing f(x) = x4 − 4x3 + 4x2 + 15 ?
Solution
\[\text { When } \left( x - a \right)\left( x - b \right)>0 \text { with }a < b, x < a \text { or }x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^4 - 4 x^3 + 4 x^2 + 15\]
\[f'\left( x \right) = 4 x^3 - 12 x^2 + 8x\]
\[ = 4x \left( x^2 - 3x + 2 \right)\]
\[ = 4x \left( x - 1 \right)\left( x - 2 \right)\]
\[\text { Here, 0, 1 and 2 are the critical points }.\]
\[\text { The possible intervals are }\left( - \infty , 0 \right),\left( 0, 1 \right),\left( 1, 2 \right)\text { and }\left( 2, \infty \right). ...(1)\]
\[\text { For f(x) to be increasing, we must have}\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 4x \left( x - 1 \right)\left( x - 2 \right) > 0 \left[ \text { Since } 4 > 0, 4x \left( x - 1 \right)\left( x - 2 \right) > 0 \Rightarrow x \left( x - 1 \right)\left( x - 2 \right) > 0 \right]\]
\[ \Rightarrow x \left( x - 1 \right)\left( x - 2 \right) > 0\]
\[ \Rightarrow x \in \left( 0, 1 \right) \cup \left( 2, \infty \right) \left[ \text { From eq }. (1) \right]\]
\[\text { So },f(x)\text { is increasing on x } \in \left( 0, 1 \right) \cup \left( 2, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 4x \left( x - 1 \right)\left( x - 2 \right) < 0 \left[ \text { Since } 4 > 0, 4x \left( x - 1 \right)\left( x - 2 \right) < 0 \Rightarrow x \left( x - 1 \right)\left( x - 2 \right) < 0 \right]\]
\[ \Rightarrow x \left( x - 1 \right)\left( x - 2 \right) < 0\]
\[ \Rightarrow x \in \left( - \infty , 0 \right) \cup \left( 1, 2 \right) \left[ \text { From eq. } (1) \right]\]
\[\text { So,}f(x)\text { is decreasing on x } \in \left( - \infty , 0 \right) \cup \left( 1, 2 \right) .\]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Prove that the function given by f (x) = x3 – 3x2 + 3x – 100 is increasing in R.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = \[5 x^\frac{3}{2} - 3 x^\frac{5}{2}\] x > 0 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Find the set of values of 'b' for which f(x) = b (x + cos x) + 4 is decreasing on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
In the interval (1, 2), function f(x) = 2 | x − 1 | + 3 | x − 2 | is
The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Prove that y = `(4sinθ)/(2 + cosθ) - θ` is an increasing function if `θ ∈[0, pi/2]`
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function
The function f(x) = 9 - x5 - x7 is decreasing for
Show that for a ≥ 1, f(x) = `sqrt(3)` sinx – cosx – 2ax + b ∈ is decreasing in R
Show that f(x) = tan–1(sinx + cosx) is an increasing function in `(0, pi/4)`
Which of the following functions is decreasing on `(0, pi/2)`?
The function f(x) = tanx – x ______.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
State whether the following statement is true or false.
If f'(x) > 0 for all x ∈ (a, b) then f(x) is decreasing function in the interval (a, b).
The function f(x) = `|x - 1|/x^2` is monotonically decreasing on ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.