Advertisements
Advertisements
Question
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Solution
\[\text { Given }: f\left( x \right) = \log_a x\]
\[\text { Domain of the given function is }\left( 0, \infty \right).\]
\[\text { Let }x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \]
\[\text { Since the given function is logarithmic, either a } > 1 or 0 < a < 1 . \]
\[\text { Case 1: Let }a > 1\]
\[\text { Here} , \]
\[ x_1 < x_2 \]
\[ \Rightarrow \log_a x_1 < \log_a x_2 \]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) < f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So },f\left( x \right)\text { is increasing on }\left( 0, \infty \right).\]
\[\text { Case 2: Let }0 < a < 1\]
\[\text { Here, }\]
\[ x_1 < x_2 \]
\[ \Rightarrow \log_a x_1 > \log_a x_2 \]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]
\[\therefore x_1 < x_2 \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So,}f\left( x \right) \text { is decreasing on }\left( 0, \infty \right)\]
\[\text { Thus, for }0 < a < 1,f\left( x \right)\text { is decreasing in its domain }.\]
APPEARS IN
RELATED QUESTIONS
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
Show that the function given by f(x) = 3x + 17 is strictly increasing on R.
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 − 9x − x2 ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Show that f(x) = sin x − cos x is an increasing function on (−π/4, π/4) ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Show that f(x) = x2 − x sin x is an increasing function on (0, π/2) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Find the values of b for which the function f(x) = sin x − bx + c is a decreasing function on R ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
The function f(x) = cot−1 x + x increases in the interval
Every invertible function is
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Function f(x) = loga x is increasing on R, if
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the value of x for which Total cost is decreasing.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Test whether the following function is increasing or decreasing.
f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
State whether the following statement is True or False:
The function f(x) = `"x"*"e"^("x" (1 - "x"))` is increasing on `((-1)/2, 1)`.
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
A man of height 1.9 m walks directly away from a lamp of height 4.75m on a level road at 6m/s. The rate at which the length of his shadow is increasing is
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.