English

Find the intervals in which the following functions are strictly increasing or decreasing: −2x3 − 9x2 − 12x + 1 - Mathematics

Advertisements
Advertisements

Question

Find the intervals in which the following functions are strictly increasing or decreasing:

−2x3 − 9x2 − 12x + 1

Sum

Solution

f(x) = - 2x3 - 9x2 - 12x + 1

f'(x) = -6x2 - 18x - 12 = - 6(x2 + 3x + 2)

= - 6(x + 2)(x + 1)

If f'(x) = 0

-6(x + 2)(x + 1) = 0

x = - 2, -1 divides the real line into three intervals: `(- infty, -2), (-2, -1)` and `(-1, infty)`.

The function f is continuously increasing in the intervals `(- infty, -2)` and `(-1, infty)` and continuously decreasing in (-2, -1).

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Application of Derivatives - Exercise 6.2 [Page 205]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 6 Application of Derivatives
Exercise 6.2 | Q 6.3 | Page 205

RELATED QUESTIONS

Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing


Prove that the logarithmic function is strictly increasing on (0, ∞).


Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Find the interval in which the following function are increasing or decreasing f(x) = (x − 1) (x − 2)?


Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?


Show that f(x) = sin x is increasing on (0, π/2) and decreasing on (π/2, π) and neither increasing nor decreasing in (0, π) ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?


Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?


What are the values of 'a' for which f(x) = ax is decreasing on R ? 


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Let f(x) = x3 + ax2 + bx + 5 sin2x be an increasing function on the set R. Then, a and b satisfy.


Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is


Function f(x) = x3 − 27x + 5 is monotonically increasing when


The function f(x) = −x/2 + sin x defined on [−π/3, π/3] is


Find the intervals in which function f given by f(x)  = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .


Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Prove that function f(x) = `x - 1/x`, x ∈ R and x ≠ 0 is increasing function


State whether the following statement is True or False: 

The function f(x) = `3/x` + 10, x ≠ 0 is decreasing


The function f(x) = `x - 1/x`, x ∈ R, x ≠ 0 is increasing


A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is


The function f(x) = 9 - x5 - x7 is decreasing for


In which interval is the given function, f(x) = 2x3 - 21x2 + 72x + 19 monotonically decreasing?


The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.


The function f(x) = mx + c where m, c are constants, is a strict decreasing function for all `"x" in "R"` , if ____________.


The interval in which the function f is given by f(x) = x2 e-x is strictly increasing, is: ____________.


If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


A function f is said to be increasing at a point c if ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×