English

Prove that F(X) = Ax + B, Where A, B Are Constants and a < 0 is a Decreasing Function on R ? - Mathematics

Advertisements
Advertisements

Question

Prove that f(x) = ax + b, where a, b are constants and a < 0 is a decreasing function on R ?

Sum

Solution

\[f\left( x \right) = ax + b\]

\[\text { Let }x_1 , x_2 \text { in R such that } x_1 < x_2 . \]

\[\text { Then },\]

\[ x_1 < x_2 \]

\[ \Rightarrow a x_1 > a x_2 (\because a<0)\]

\[ \Rightarrow a x_1 + b > a x_2 + b\]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right)\]

\[\text { Thus }, x_1 < x_2 \]

\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right), \forall x_1 , x_2 \in R\]

\[\text { So },f\left( x \right) \text { is decreasing on R } .\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.1 [Page 10]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.1 | Q 4 | Page 10

RELATED QUESTIONS

The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Show that the function given by f(x) = sin x is

  1. strictly increasing in `(0, pi/2)`
  2. strictly decreasing in `(pi/2, pi)`
  3. neither increasing nor decreasing in (0, π)

Find the intervals in which the function f given by f(x) = 2x3 − 3x2 − 36x + 7 is

  1. Strictly increasing
  2. Strictly decreasing

Prove that the function f given by f(x) = x2 − x + 1 is neither strictly increasing nor strictly decreasing on (−1, 1).


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = −2x3 − 9x2 − 12x + 1  ?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?


Prove that the function f(x) = x3 − 6x2 + 12x − 18 is increasing on R ?


Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?


Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?


Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?


Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?


Write the interval in which f(x) = sin x + cos x, x ∈ [0, π/2] is increasing ?


State whether f(x) = tan x − x is increasing or decreasing its domain ?


If the function f(x) = 2 tan x + (2a + 1) loge | sec x | + (a − 2) x is increasing on R, then


The function \[f\left( x \right) = \frac{x}{1 + \left| x \right|}\] is 

 


Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Choose the correct option from the given alternatives :

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.


Test whether the following function is increasing or decreasing.

f(x) = `7/"x" - 3`, x ∈ R, x ≠ 0


Find the value of x, such that f(x) is decreasing function.

f(x) = 2x3 - 15x2 - 144x - 7 


For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.


For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


For every value of x, the function f(x) = `1/7^x` is ______ 


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


The function `"f"("x") = "x"/"logx"` increases on the interval


The function f: N → N, where

f(n) = `{{:(1/2(n + 1), "If n is sold"),(1/2n, "if n is even"):}` is


Show that function f(x) = tan x is increasing in `(0, π/2)`.


If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.


The function f(x) = x3 + 3x is increasing in interval ______.


The function f(x) = sin4x + cos4x is an increasing function if ______.


Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×