Advertisements
Advertisements
Question
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Solution
\[f\left( x \right) = x\left| x \right|, x \in R\]
\[\text { Case I: When x } \geq 0\]
\[f\left( x \right) = x\left| x \right| = x\left( x \right) = x^2 \]
\[ \Rightarrow f'\left( x \right) = 2x \geq 0 \forall x \geq 0\]
\[\text { So,} f\left( x \right)\text { is increasing for x } \geq 0 . \]
\[\text { Case II: When } x < 0\]
\[f\left( x \right) = x\left| x \right| = x\left( - x \right) = - x^2 \]
\[ \Rightarrow f'\left( x \right) = - 2x \geq 0 \forall x < 0\]
\[\text { So, }f\left( x \right)\text { is increasing for } x < 0 . \]
\[\text { Hence }, f\left( x \right)\text { is increasing for x } \in R . \]
APPEARS IN
RELATED QUESTIONS
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
10 − 6x − 2x2
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the logarithmic function is strictly increasing on (0, ∞).
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Prove that the function f : N → N, defined by f(x) = x2 + x + 1 is one-one but not onto. Find the inverse of f: N → S, where S is range of f.
The edge of a cube is decreasing at the rate of`( 0.6"cm")/sec`. Find the rate at which its volume is decreasing, when the edge of the cube is 2 cm.
show that f(x) = `3x + (1)/(3x)` is increasing in `(1/3, 1)` and decreasing in `(1/9, 1/3)`.
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
If the function f(x) = `7/x - 3`, x ∈ R, x ≠ 0 is a decreasing function, then x ∈ ______
A circular pIate is contracting at the uniform rate of 5cm/sec. The rate at which the perimeter is decreasing when the radius of the circle is 10 cm Jong is
The function f(x) = 9 - x5 - x7 is decreasing for
The area of the square increases at the rate of 0.5 cm2/sec. The rate at which its perimeter is increasing when the side of the square is 10 cm long is ______.
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
For every value of x, the function f(x) = `1/7^x` is ______
The function f(x) = tanx – x ______.
The function f(x) = x2 – 2x is increasing in the interval ____________.
2x3 - 6x + 5 is an increasing function, if ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.
Show that function f(x) = tan x is increasing in `(0, π/2)`.
If f(x) = `x - 1/x`, x∈R, x ≠ 0 then f(x) is increasing.
Let f(x) = tan–1`phi`(x), where `phi`(x) is monotonically increasing for `0 < x < π/2`. Then f(x) is ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Function f(x) = x100 + sinx – 1 is increasing for all x ∈ ______.
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.