Advertisements
Advertisements
Question
Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?
Solution
\[ f\left( x \right) = \sin x + \left| \sin x \right|, 0 < x \leq 2\pi\]
\[\text { Case I: When x }\in \left( 0, \pi \right)\]
\[f\left( x \right) = \sin x + \sin x = 2\sin x\]
\[ \Rightarrow f'\left( x \right) = 2\cos x\]
\[\text { As,} \cos x > 0 \text { for } x \in \left( 0, \frac{\pi}{2} \right) \text { and }\cos x < 0 \text { for } x \in \left( \frac{\pi}{2}, \pi \right)\]
\[\text { So,} f'\left( x \right) > 0\text { for} x \in \left( 0, \frac{\pi}{2} \right)\text{ and } f'\left( x \right) < 0 \text { for }x \in \left( \frac{\pi}{2}, \pi \right)\]
\[ \therefore f\left( x \right)\text { is increaing on} \left( 0, \frac{\pi}{2} \right) \text { and } f\left( x \right) \text { is decreasing on } \left( \frac{\pi}{2}, \pi \right) . \]
\[\text { Case II: When x } \in \left( \pi, 2\pi \right)\]
\[f\left( x \right) = \sin x - \sin x = 0\]
\[ \Rightarrow f'\left( x \right) = 0\]
\[\text { So,} f\left( x \right) \text { is neither increaing nor decreasing on } \left( \pi, 2\pi \right) . \]
APPEARS IN
RELATED QUESTIONS
Prove that y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`
Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`
The interval in which y = x2 e–x is increasing is ______.
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?
Show that f(x) = e2x is increasing on R.
Show that f(x) = x − sin x is increasing for all x ∈ R ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?
Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the value of x such that f(x) is decreasing function.
f(x) = x4 − 2x3 + 1
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.
The function f(x) = tan-1 (sin x + cos x) is an increasing function in:
Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.
Given f(x) = 2x3 – 9x2 + 12x + 2
∴ f'(x) = `squarex^2 - square + square`
∴ f'(x) = `6(x - 1)(square)`
Now f'(x) < 0
∴ 6(x – 1)(x – 2) < 0
Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0
Case 1: (x – 1) < 0 and (x – 2) < 0
∴ x < `square` and x > `square`
Which is contradiction
Case 2: x – 1 and x – 2 < 0
∴ x > `square` and x < `square`
1 < `square` < 2
f(x) is decreasing if and only if x ∈ `square`
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
A function f is said to be increasing at a point c if ______.