English

Find the Intervals in Which F(X) is Increasing Or Decreasing F(X) = Sinx + |Sinx|, 0 < X ≤ 2 π ? - Mathematics

Advertisements
Advertisements

Question

Find the interval in which f(x) is increasing or decreasing f(x) = sinx + |sin x|, 0 < x \[\leq 2\pi\] ?

Sum

Solution

\[ f\left( x \right) = \sin x + \left| \sin x \right|, 0 < x \leq 2\pi\]

\[\text { Case I: When x }\in \left( 0, \pi \right)\]

\[f\left( x \right) = \sin x + \sin x = 2\sin x\]

\[ \Rightarrow f'\left( x \right) = 2\cos x\]

\[\text { As,} \cos x > 0 \text { for } x \in \left( 0, \frac{\pi}{2} \right) \text { and }\cos x < 0 \text { for } x \in \left( \frac{\pi}{2}, \pi \right)\]

\[\text { So,} f'\left( x \right) > 0\text { for} x \in \left( 0, \frac{\pi}{2} \right)\text{  and } f'\left( x \right) < 0 \text { for }x \in \left( \frac{\pi}{2}, \pi \right)\]

\[ \therefore f\left( x \right)\text {  is increaing on} \left( 0, \frac{\pi}{2} \right) \text { and } f\left( x \right) \text { is decreasing on } \left( \frac{\pi}{2}, \pi \right) . \]

\[\text { Case II: When x } \in \left( \pi, 2\pi \right)\]

\[f\left( x \right) = \sin x - \sin x = 0\]

\[ \Rightarrow f'\left( x \right) = 0\]

\[\text { So,} f\left( x \right) \text { is neither increaing nor decreasing on } \left( \pi, 2\pi \right) . \]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 39.2 | Page 35

RELATED QUESTIONS

Prove that  y = `(4sin theta)/(2 + cos theta) - theta` is an increasing function of θ in `[0, pi/2]`


Prove that the function f given by f(x) = log cos x is strictly decreasing on `(0, pi/2)` and strictly increasing on `((3pi)/2, 2pi).`


The interval in which y = x2 e–x is increasing is ______.


Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.


Let f be a function defined on [a, b] such that f '(x) > 0, for all x ∈ (a, b). Then prove that f is an increasing function on (a, b).


Prove that the function f(x) = loge x is increasing on (0, ∞) ?


Find the interval in which the following function are increasing or decreasing f(x) = 5 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{x^4}{4} + \frac{2}{3} x^3 - \frac{5}{2} x^2 - 6x + 7\] ?


Show that f(x) = e2x is increasing on R.


Show that f(x) = x − sin x is increasing for all x ∈ R ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?


State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?


Find the intervals in which f(x) = log (1 + x) −\[\frac{x}{1 + x}\] is increasing or decreasing ?


Prove that the following function is increasing on R f \[(x) =\]3 \[x^5\] + 40 \[x^3\] + 240\[x\] ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:


Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when


If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then

 


Show that the function f given by f(x) = tan–1 (sin x + cos x) is decreasing for all \[x \in \left( \frac{\pi}{4}, \frac{\pi}{2} \right) .\]


 Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R. 


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.


Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______


The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


Let f be a real valued function defined on (0, 1) ∪ (2, 4) such that f '(x) = 0 for every x, then ____________.


The function f(x) = tan-1 (sin x + cos x) is an increasing function in:


Find the value of x for which the function f(x)= 2x3 – 9x2 + 12x + 2 is decreasing.

Given f(x) = 2x3 – 9x2 + 12x + 2

∴ f'(x) = `squarex^2 - square + square`

∴ f'(x) = `6(x - 1)(square)`

Now f'(x) < 0

∴ 6(x – 1)(x – 2) < 0

Since ab < 0 ⇔a < 0 and b < 0 or a > 0 and b < 0

Case 1: (x – 1) < 0 and (x – 2) < 0

∴ x < `square` and x > `square`

Which is contradiction

Case 2: x – 1 and x – 2 < 0

∴ x > `square` and x < `square`

1 < `square` < 2

f(x) is decreasing if and only if x ∈ `square`


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


A function f is said to be increasing at a point c if ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×