Advertisements
Advertisements
Question
Show that the function f(x) = sin (2x + π/4) is decreasing on (3π/8, 5π/8) ?
Solution
\[f\left( x \right) = \sin \left( 2x + \frac{\pi}{4} \right)\]
\[f'\left( x \right) = 2 \cos \left( 2x + \frac{\pi}{4} \right)\]
\[\text { Here, } \]
\[\frac{3\pi}{8} < x < \frac{5\pi}{8}\]
\[ \Rightarrow \frac{3\pi}{4} < 2x < \frac{5\pi}{4}\]
\[ \Rightarrow \pi < 2x + \frac{\pi}{4} < \frac{3\pi}{2}\]
\[ \Rightarrow \ cos \left( 2x + \frac{\pi}{4} \right) < 0 \left[ \because \text { Cos function is negative inthird quadrant } \right]\]
\[ \Rightarrow 2 \cos \left( 2x + \frac{\pi}{4} \right) < 0\]
\[ \Rightarrow f'\left( x \right) < 0, \forall x \in \left( \frac{3\pi}{8}, \frac{5\pi}{8} \right)\]
\[\text { So },f\left( x \right) \text { is decreasing on }\left( \frac{3\pi}{8}, \frac{5\pi}{8} \right).\]
APPEARS IN
RELATED QUESTIONS
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Show that y = `log(1+x) - (2x)/(2+x), x> - 1`, is an increasing function of x throughout its domain.
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
The interval in which y = x2 e–x is increasing is ______.
Without using the derivative show that the function f (x) = 7x − 3 is strictly increasing function on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 10 − 6x − 2x2 ?
Find the interval in which the following function are increasing or decreasing f(x) = 6 + 12x + 3x2 − 2x3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \left\{ x(x - 2) \right\}^2\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Find the intervals in which f(x) = sin x − cos x, where 0 < x < 2π is increasing or decreasing ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Prove that the function f given by f(x) = x3 − 3x2 + 4x is strictly increasing on R ?
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
The function f(x) = xx decreases on the interval
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = x3 − 27x + 5 is monotonically increasing when
The function f(x) = x9 + 3x7 + 64 is increasing on
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find the intervals in which function f given by f(x) = 4x3 - 6x2 - 72x + 30 is (a) strictly increasing, (b) strictly decresing .
Choose the correct option from the given alternatives :
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly decreasing in ______.
State whether the following statement is True or False:
If the function f(x) = x2 + 2x – 5 is an increasing function, then x < – 1
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The function f(x) = x3 - 3x is ______.
For every value of x, the function f(x) = `1/7^x` is ______
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R
Let the f : R → R be defined by f (x) = 2x + cosx, then f : ______.
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 – h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.