Advertisements
Advertisements
Question
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Solution 1
`x=cos^2θ and y=cot θ`
`(dx)/(dθ)=d/(dθ) (cos^2θ)`
`dx/(dθ)=-2cosθ sin θ`
`dy/dθ=-cosec^2θ`
`dy/dx=dy/(dθ)/dx/(dθ)`
= `(-cosec^2θ)/(-2cosθ sinθ)`
=`1/(2sin^3 θ cos θ)`
=`(1/2sin^3θ cos θ)θ=pi/4`
`(dy/dx)_θ=pi/4`
=`1/2(1/sqrt2)^3 1/sqrt2`
=`1/(2 1/4)=2`
Solution 2
`x=cos^2θ and y=cot θ`
`(dx)/(dθ)=2 cosθ (-sinθ )`
`dx/(dθ)=-2cosθ sin θ`
y = cotθ
`dy/dθ=-cosec^2θ`
`dy/dx=(dy/(dθ))/(dx/(dθ))`
= `(-cosec^2θ)/(-2cosθ sinθ)`
`((dy)/(dx))_(0=π/4) = (cosec^2 π/4)/(2.sin π/4. cos π/4) `
= `2/(2 xx 1/sqrt2 xx 1/sqrt2`
= 2
Solution 3
`x=cos^2θ and y=cot θ`
`(dx)/(dθ)=2 cosθ (-sinθ )`
`dx/(dθ)=-2cosθ sin θ`
y = cotθ
`dy/dθ=-cosec^2θ`
`dy/dx=(dy/(dθ))/(dx/(dθ))`
= `(-cosec^2θ)/(-2cosθ sinθ)`
`((dy)/(dx))_(0=π/4) = (cosec^2 π/4)/(2.sin π/4. cos π/4) `
= `2/(2 xx 1/sqrt2 xx 1/sqrt2`
= 2
APPEARS IN
RELATED QUESTIONS
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the function f given by f(x) = 2x2 − 3x is
- strictly increasing
- strictly decreasing
Find the values of x for `y = [x(x - 2)]^2` is an increasing function.
Prove that the logarithmic function is strictly increasing on (0, ∞).
On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?
Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?
Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?
Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2 ?
Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?
Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?
Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?
The interval of increase of the function f(x) = x − ex + tan (2π/7) is
Function f(x) = loga x is increasing on R, if
If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.
Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6
Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12
Find the value of x, such that f(x) is increasing function.
f(x) = 2x3 - 15x2 + 36x + 1
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that f(x) = x – cos x is increasing for all x.
Choose the correct alternative:
The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is
If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.
The function f(x) = sin x + 2x is ______
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.
If f(x) = x + cosx – a then ______.
The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.