English

If X = Cos2 θ and Y = Cot θ Then Find D Y D X a T θ = π 4 - Mathematics and Statistics

Advertisements
Advertisements

Question

If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 

Sum

Solution 1

`x=cos^2θ and y=cot θ` 

`(dx)/(dθ)=d/(dθ) (cos^2θ)` 

`dx/(dθ)=-2cosθ  sin θ` 

`dy/dθ=-cosec^2θ` 

`dy/dx=dy/(dθ)/dx/(dθ)` 

= `(-cosec^2θ)/(-2cosθ  sinθ)` 

=`1/(2sin^3 θ cos θ)` 

=`(1/2sin^3θ cos θ)θ=pi/4` 

`(dy/dx)_θ=pi/4` 

=`1/2(1/sqrt2)^3  1/sqrt2` 

=`1/(2 1/4)=2`

 

shaalaa.com

Solution 2

`x=cos^2θ and y=cot θ` 

`(dx)/(dθ)=2 cosθ (-sinθ )` 

`dx/(dθ)=-2cosθ  sin θ` 

y = cotθ

`dy/dθ=-cosec^2θ` 

`dy/dx=(dy/(dθ))/(dx/(dθ))` 

= `(-cosec^2θ)/(-2cosθ  sinθ)` 

`((dy)/(dx))_(0=π/4) = (cosec^2 π/4)/(2.sin π/4. cos π/4) `

= `2/(2 xx 1/sqrt2 xx 1/sqrt2`

= 2 

shaalaa.com

Solution 3

`x=cos^2θ and y=cot θ` 

`(dx)/(dθ)=2 cosθ (-sinθ )` 

`dx/(dθ)=-2cosθ  sin θ` 

y = cotθ

`dy/dθ=-cosec^2θ` 

`dy/dx=(dy/(dθ))/(dx/(dθ))` 

= `(-cosec^2θ)/(-2cosθ  sinθ)` 

`((dy)/(dx))_(0=π/4) = (cosec^2 π/4)/(2.sin π/4. cos π/4) `

= `2/(2 xx 1/sqrt2 xx 1/sqrt2`

= 2 

shaalaa.com
  Is there an error in this question or solution?
2017-2018 (March)

APPEARS IN

RELATED QUESTIONS

The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.

(A) increasing

(B) decreasing

(C) increasing and decreasing

(D) neither increasing nor decreasing


Find the intervals in which the function f given by f(x) = 2x2 − 3x is

  1. strictly increasing
  2. strictly decreasing

Find the values of x for  `y = [x(x - 2)]^2` is an increasing function.


Prove that the logarithmic function is strictly increasing on (0, ∞).


On which of the following intervals is the function f given byf(x) = x100 + sin x –1 strictly decreasing?


Prove that the function f(x) = loga x is increasing on (0, ∞) if a > 1 and decreasing on (0, ∞), if 0 < a < 1 ?


Show that f(x) = \[\frac{1}{1 + x^2}\] decreases in the interval [0, ∞) and increases in the interval (−∞, 0] ?


Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?


Find the interval in which the following function are increasing or decreasing   f(x) = 2x3 − 12x2 + 18x + 15 ?


Find the interval in which the following function are increasing or decreasing f(x) = x3 − 6x2 − 36x + 2 ?


Find the interval in which the following function are increasing or decreasing f(x) = x8 + 6x2  ?


Show that f(x) = loga x, 0 < a < 1 is a decreasing function for all x > 0 ?


Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?


Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?


Show that f(x) = tan x is an increasing function on (−π/2, π/2) ?


Prove that the following function is increasing on R f \[f\left( x \right) = 4 x^3 - 18 x^2 + 27x - 27\] ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the values of 'a' for which the function f(x) = sin x − ax + 4 is increasing function on R ?


Write the set of values of a for which f(x) = cos x + a2 x + b is strictly increasing on R ?


The interval of increase of the function f(x) = x − ex + tan (2π/7) is


Function f(x) = loga x is increasing on R, if


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is

(a) strictly increasing
(b) strictly decreasing


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Find the values of x for which the following functions are strictly increasing : f(x) = 2x3 – 3x2 – 12x + 6


Find the values of x for which the following functions are strictly decreasing : f(x) = x3 – 9x2 + 24x + 12


Find the value of x, such that f(x) is increasing function.

f(x) = 2x3 - 15x2 + 36x + 1 


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Show that f(x) = x – cos x is increasing for all x.


Choose the correct alternative:

The function f(x) = x3 – 3x2 + 3x – 100, x ∈ R is


If f(x) = [x], where [x] is the greatest integer not greater than x, then f'(1') = ______.


The function f(x) = sin x + 2x is ______ 


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.


If f(x) = x5 – 20x3 + 240x, then f(x) satisfies ______.


If f(x) = x + cosx – a then ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Read the following passage:

The use of electric vehicles will curb air pollution in the long run.

The use of electric vehicles is increasing every year and the estimated electric vehicles in use at any time t is given by the function V:

V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`

where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively.

Based on the above information, answer the following questions:

  1. Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
  2. Prove that the function V(t) is an increasing function. (2)

Let f(x) = x3 – 6x2 + 9x + 18, then f(x) is strictly increasing in ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×