Advertisements
Advertisements
Question
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Solution
\[f\left( x \right) = \frac{1}{1 + x^2}\]
\[\text { R can be divided into two intervals }\left( 0, \infty \right)\text { and }( - \infty , 0] . \]
\[\text { Case }1: \text { Let } x_1 , x_2 \in \left( 0, \infty \right) \text { such that } x_1 < x_2 . \text { Then },\]
\[ x_1 < x_2 \]
\[ \Rightarrow {x_1}^2 < {x_2}^2 \]
\[ \Rightarrow 1 + {x_1}^2 < 1 + {x_2}^2 \]
\[ \Rightarrow \frac{1}{1 + {x_1}^2} > \frac{1}{1 + {x_2}^2}\]
\[ \Rightarrow f\left( x_1 \right) > f\left( x_2 \right) \forall x_1 , x_2 \in \left( 0, \infty \right)\]
\[\text { So, }f\left( x \right) \text { is decreasing on }\left( 0, \infty \right).\]
\[\text { Case } 2: \text { Let } x_1 , x_2 \in ( - \infty , 0] \text { such that } x_1 < x_2 . \text { Then },\]
\[ x_1 < x_2 \]
\[ \Rightarrow {x_1}^2 > {x_2}^2 \]
\[ \Rightarrow 1 + {x_1}^2 > 1 + {x_2}^2 \]
\[ \Rightarrow \frac{1}{1 + {x_1}^2} < \frac{1}{1 + {x_2}^2}\]
\[ \Rightarrow f\left( x_1 \right) < f\left( x_2 \right) \forall x_1 , x_2 \in ( - \infty , 0]\]
\[\text { So },f\left( x \right)\text { is increasing on }( - \infty , 0].\]
\[\text { Here }, f\left( x \right)\text { is decreasing on}\left( 0, \infty \right)\text { and increasing on }( - \infty , 0].\]
\[\text { Thus },f\left( x \right) \text { is neither increasing nor decreasing on R } . \]
APPEARS IN
RELATED QUESTIONS
Price P for demand D is given as P = 183 +120D - 3D2 Find D for which the price is increasing
Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the least value of a such that the function f given by f (x) = x2 + ax + 1 is strictly increasing on [1, 2].
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = x3 − 12x2 + 36x + 17 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{10} x^4 - \frac{4}{5} x^3 - 3 x^2 + \frac{36}{5}x + 11\] ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] ?
Show that f(x) = tan−1 x − x is a decreasing function on R ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Write the set of values of k for which f(x) = kx − sin x is increasing on R ?
If g (x) is a decreasing function on R and f(x) = tan−1 [g (x)]. State whether f(x) is increasing or decreasing on R ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
Let f(x) = x3 − 6x2 + 15x + 3. Then,
If the function f(x) = cos |x| − 2ax + b increases along the entire number scale, then
Function f(x) = ax is increasing on R, if
Function f(x) = loga x is increasing on R, if
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
Using truth table show that ∼ (p → ∼ q) ≡ p ∧ q
Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).
Find the values of x for which the following func- tions are strictly increasing : f(x) = x3 – 6x2 – 36x + 7
Find the values of x for which the following functions are strictly decreasing:
f(x) = 2x3 – 3x2 – 12x + 6
Show that f(x) = x – cos x is increasing for all x.
For manufacturing x units, labour cost is 150 – 54x and processing cost is x2. Price of each unit is p = 10800 – 4x2. Find the values of x for which Revenue is increasing.
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______
Find the values of x for which the function f(x) = 2x3 – 6x2 + 6x + 24 is strictly increasing
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
For every value of x, the function f(x) = `1/"a"^x`, a > 0 is ______.
The function f(x) = sin x + 2x is ______
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
The function `"f"("x") = "log" (1 + "x") - (2"x")/(2 + "x")` is increasing on ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
The interval in which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.