Advertisements
Advertisements
Question
Find the interval in which the following function are increasing or decreasing f(x) = x2 + 2x − 5 ?
Solution
\[\text { When }\left( x - a \right)\left( x - b \right)>0 \text { with} a < b, x < a \ or \ x>b.\]
\[\text { When } \left( x - a \right)\left( x - b \right)<0 \text { with } a < b, a < x < b .\]
\[f\left( x \right) = x^2 + 2x - 5\]
\[f'\left( x \right) = 2x + 2\]
\[\text { For }f(x) \text { to be increasing, we must have }\]
\[f'\left( x \right) > 0\]
\[ \Rightarrow 2x + 2 > 0\]
\[ \Rightarrow 2\left( x + 1 \right) > 0\]
\[ \Rightarrow x + 1 > 0\]
\[ \Rightarrow x > - 1\]
\[ \Rightarrow x \in \left( - 1, \infty \right)\]
\[\text { So,}f(x)\text { is increasing on } \left( - 1, \infty \right) . \]
\[\text { For }f(x) \text { to be decreasing, we must have }\]
\[f'\left( x \right) < 0\]
\[ \Rightarrow 2x + 2 < 0\]
\[ \Rightarrow 2\left( x + 1 \right) < 0\]
\[ \Rightarrow x + 1 < 0\]
\[ \Rightarrow x < - 1\]
\[ \Rightarrow x \in \left( - \infty , - 1 \right)\]
\[\text { So,}f(x)\text { is decreasing on }\left( - \infty , - 1 \right).\]
APPEARS IN
RELATED QUESTIONS
The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?
Find the value of c in Rolle's theorem for the function `f(x) = x^3 - 3x " in " (-sqrt3, 0)`
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
(x + 1)3 (x − 3)3
Prove that the logarithmic function is strictly increasing on (0, ∞).
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 5x3 − 15x2 − 120x + 3 ?
Find the interval in which the following function are increasing or decreasing \[f\left( x \right) = 3 x^4 - 4 x^3 - 12 x^2 + 5\] ?
Show that f(x) = e1/x, x ≠ 0 is a decreasing function for all x ≠ 0 ?
Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?
Show that f(x) = sin x is an increasing function on (−π/2, π/2) ?
Find the intervals in which f(x) = (x + 2) e−x is increasing or decreasing ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Find the interval in which f(x) is increasing or decreasing f(x) = x|x|, x \[\in\] R ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
The function f(x) = x2 e−x is monotonic increasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
If x = cos2 θ and y = cot θ then find `dy/dx at θ=pi/4`
Find `dy/dx,if e^x+e^y=e^(x-y)`
Prove that the function `f(x) = x^3- 6x^2 + 12x+5` is increasing on R.
Find the values of x for which f(x) = `x/(x^2 + 1)` is (a) strictly increasing (b) decreasing.
Show that function f(x) =`("x - 2")/("x + 1")`, x ≠ -1 is increasing.
The total cost function for production of articles is given as C = 100 + 600x – 3x2, then the values of x for which the total cost is decreasing is ______
The function f(x) = 9 - x5 - x7 is decreasing for
A ladder 20 ft Jong leans against a vertical wall. The top-end slides downwards at the rate of 2 ft per second. The rate at which the lower end moves on a horizontal floor when it is 12 ft from the wall is ______
The sides of a square are increasing at the rate of 0.2 cm/sec. When the side is 25cm long, its area is increasing at the rate of ______
The values of k for which the function f(x) = kx3 – 6x2 + 12x + 11 may be increasing on R are ______.
Determine for which values of x, the function y = `x^4 – (4x^3)/3` is increasing and for which values, it is decreasing.
The interval on which the function f(x) = 2x3 + 9x2 + 12x – 1 is decreasing is ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.
If f(x) = sin x – cos x, then interval in which function is decreasing in 0 ≤ x ≤ 2 π, is:
`"f"("x") = (("e"^(2"x") - 1)/("e"^(2"x") + 1))` is ____________.
If f(x) = x3 + 4x2 + λx + 1(λ ∈ R) is a monotonically decreasing function of x in the largest possible interval `(–2, (–2)/3)` then ______.
y = log x satisfies for x > 1, the inequality ______.
The function f(x) = tan–1(sin x + cos x) is an increasing function in ______.
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.