English

Prove that the Function F(X) = Cos X Is: (I) Strictly Decreasing in (0, π) (Ii) Strictly Increasing in (π, 2π) (Iii) Neither Increasing Nor Decreasing in (0, 2π) - Mathematics

Advertisements
Advertisements

Question

Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).

Sum

Solution

\[f\left( x \right) = \cos x\]

\[f'\left( x \right) = - \sin x\]

\[\left( i \right) \] \[\text { Here },\]

\[0 < x < \pi\]

\[ \Rightarrow \sin x > 0 \left[ \because \text { Sine function is positive in first and second quadrant } \right]\]

\[ \Rightarrow - \sin x < 0\]

\[ \Rightarrow f'\left( x \right) < 0, \forall x \in \left( 0, \pi \right)\]

\[\text { So, f(x)   is strictly decreasing on } \left( 0, \pi \right) . \]

\[\left( ii \right) \] \[\text { Here, }\]

\[\pi < x < 2\pi\]

\[ \Rightarrow \sin x < 0 \left[ \because \text { Sine function is negative in third and fourth quadrant} \right]\]

\[ \Rightarrow - \sin x > 0\]

\[ \Rightarrow f'\left( x \right) > 0, \forall x \in \left( \pi, 2\pi \right)\]

\[\text { So,f(x)is strictly increasing on } \left( \pi, 2\pi \right) . \]

\[\left( iii \right) \] \[\text { From eqs. (1) and (2), we get }\]

\[f(x)\text { is strictly decreasing on } \left( 0, \pi \right) \text { and is strictly increasing on } \left( \pi, 2\pi \right) . \]

\[\text { So,}f\left( x \right) \text { is neither increasing nor decreasing on}\left( 0, 2\pi \right).\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 17: Increasing and Decreasing Functions - Exercise 17.2 [Page 35]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 17 Increasing and Decreasing Functions
Exercise 17.2 | Q 33 | Page 35

RELATED QUESTIONS

Find the intervals in which f(x) = sin 3x – cos 3x, 0 < x < π, is strictly increasing or strictly decreasing.


The side of an equilateral triangle is increasing at the rate of 2 cm/s. At what rate is its area increasing when the side of the triangle is 20 cm ?


Prove that f(x) = ax + b, where a, b are constants and a > 0 is an increasing function on R ?


Without using the derivative, show that the function f (x) = | x | is.
(a) strictly increasing in (0, ∞)
(b) strictly decreasing in (−∞, 0) .


Find the interval in which the following function are increasing or decreasing f(x) = 8 + 36x + 3x2 − 2x?


Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?


Show that f(x) = x3 − 15x2 + 75x − 50 is an increasing function for all x ∈ R ?


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π) ?


Show that f(x) = (x − 1) ex + 1 is an increasing function for all x > 0 ?


Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?


Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?


Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?


Let f(x) = x3 − 6x2 + 15x + 3. Then,


Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)


If the function f(x) = x2 − kx + 5 is increasing on [2, 4], then


If x = cos2 θ and y = cot θ then find `dy/dx  at  θ=pi/4` 


Show that f(x) = cos x is a decreasing function on (0, π), increasing in (−π, 0) and neither increasing nor decreasing in (−π, π).


Test whether the following functions are increasing or decreasing : f(x) = 2 – 3x + 3x2 – x3, x ∈ R.


Show that f(x) = x – cos x is increasing for all x.


Find the value of x such that f(x) is decreasing function.

f(x) = x4 − 2x3 + 1


Choose the correct alternative.

The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is


Let f(x) = x3 − 6x2 + 9𝑥 + 18, then f(x) is strictly decreasing in ______


Find the values of x for which the function f(x) = x3 – 6x2 – 36x + 7 is strictly increasing


Find the values of x such that f(x) = 2x3 – 15x2 – 144x – 7 is decreasing function


Show that f(x) = 2x + cot–1x + `log(sqrt(1 + x^2) - x)` is increasing in R


The function f(x) = 4 sin3x – 6 sin2x + 12 sinx + 100 is strictly ______.


Let `"f (x) = x – cos x, x" in "R"`, then f is ____________.


Let f (x) = tan x – 4x, then in the interval `[- pi/3, pi/3], "f"("x")` is ____________.


The length of the longest interval, in which the function `3  "sin x" - 4  "sin"^3"x"` is increasing, is ____________.


Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.


Let x0 be a point in the domain of definition of a real valued function `f` and there exists an open interval I = (x0 –  h, ro + h) containing x0. Then which of the following statement is/ are true for the above statement.


Function given by f(x) = sin x is strictly increasing in.


Find the interval in which the function `f` is given by `f(x) = 2x^2 - 3x` is strictly decreasing.


The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.


If f(x) = x + cosx – a then ______.


The interval in which the function f(x) = `(4x^2 + 1)/x` is decreasing is ______.


Find the values of x for which the function f(x) = `x/(x^2 + 1)` is strictly decreasing.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×