Advertisements
Advertisements
Question
Prove that the function f given by f(x) = log cos x is strictly increasing on (−π/2, 0) and strictly decreasing on (0, π/2) ?
Solution
\[f\left( x \right) = \log \cos x\]
\[f'\left( x \right) = \frac{1}{\cos x}\left( - \sin x \right)\]
\[ = - \tan x\]
\[\text { Now,} \]
\[x \in \left( - \frac{\pi}{2}, 0 \right)\]
\[ \Rightarrow \tan x < 0\]
\[ \Rightarrow - \tan x > 0 \]
\[ \Rightarrow f'(x) > 0\]
\[\text { So, f(x) is strictly increasing on } \left( - \frac{\pi}{2}, 0 \right) . \]
\[\text { Now,} \]
\[x \in \left( 0, \frac{\pi}{2} \right)\]
\[ \Rightarrow \tan x > 0\]
\[ \Rightarrow - \tan x < 0 \]
\[ \Rightarrow f'(x) < 0\]
\[\text { So, f(x)is strictly decreasing on }\left( 0, \frac{\pi}{2} \right).\]
APPEARS IN
RELATED QUESTIONS
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
The function f (x) = x3 – 3x2 + 3x – 100, x∈ R is _______.
(A) increasing
(B) decreasing
(C) increasing and decreasing
(D) neither increasing nor decreasing
Find the intervals in which the following functions are strictly increasing or decreasing:
x2 + 2x − 5
Find the intervals in which the following functions are strictly increasing or decreasing:
−2x3 − 9x2 − 12x + 1
Prove that the function f given by f(x) = log sin x is strictly increasing on `(0, pi/2)` and strictly decreasing on `(pi/2, pi)`
Find the intervals in which the function f given by `f(x) = x^3 + 1/x^3 x != 0`, is (i) increasing (ii) decreasing.
Water is dripping out from a conical funnel of semi-verticle angle `pi/4` at the uniform rate of `2 cm^2/sec`in the surface, through a tiny hole at the vertex of the bottom. When the slant height of the water level is 4 cm, find the rate of decrease of the slant height of the water.
Show that f(x) = \[\frac{1}{1 + x^2}\] is neither increasing nor decreasing on R ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 12x2 + 18x + 15 ?
Show that f(x) = cos2 x is a decreasing function on (0, π/2) ?
Show that f(x) = x9 + 4x7 + 11 is an increasing function for all x ∈ R ?
Prove that the function f(x) = cos x is:
(i) strictly decreasing in (0, π)
(ii) strictly increasing in (π, 2π)
(iii) neither increasing nor decreasing in (0, 2π).
Write the set of values of 'a' for which f(x) = loga x is increasing in its domain ?
Write the set of values of a for which the function f(x) = ax + b is decreasing for all x ∈ R ?
The function f(x) = 2 log (x − 2) − x2 + 4x + 1 increases on the interval
Let \[f\left( x \right) = \tan^{- 1} \left( g\left( x \right) \right),\],where g (x) is monotonically increasing for 0 < x < \[\frac{\pi}{2} .\] Then, f(x) is
If the function f(x) = kx3 − 9x2 + 9x + 3 is monotonically increasing in every interval, then
Let ϕ(x) = f(x) + f(2a − x) and f"(x) > 0 for all x ∈ [0, a]. Then, ϕ (x)
The radius r of a right circular cylinder is increasing uniformly at the rate of 0·3 cm/s and its height h is decreasing at the rate of 0·4 cm/s. When r = 3·5 cm and h = 7 cm, find the rate of change of the curved surface area of the cylinder. \[\left[ \text{ Use } \pi = \frac{22}{7} \right]\]
Find the intervals in which the function \[f(x) = \frac{3}{2} x^4 - 4 x^3 - 45 x^2 + 51\] is
(a) strictly increasing
(b) strictly decreasing
The price P for demand D is given as P = 183 + 120 D – 3D2.
Find D for which the price is increasing.
Find the values of x for which the following functions are strictly increasing:
f(x) = 3 + 3x – 3x2 + x3
Find the values of x for which the following functions are strictly decreasing : f(x) = `x + (25)/x`
Solve the following:
Find the intervals on which the function f(x) = `x/logx` is increasing and decreasing.
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 - 15x2 - 144x - 7
Choose the correct alternative.
The function f(x) = x3 - 3x2 + 3x - 100, x ∈ R is
By completing the following activity, find the values of x such that f(x) = 2x3 – 15x2 – 84x – 7 is decreasing function.
Solution: f(x) = 2x3 – 15x2 – 84x – 7
∴ f'(x) = `square`
∴ f'(x) = 6`(square) (square)`
Since f(x) is decreasing function.
∴ f'(x) < 0
Case 1: `(square)` > 0 and (x + 2) < 0
∴ x ∈ `square`
Case 2: `(square)` < 0 and (x + 2) > 0
∴ x ∈ `square`
∴ f(x) is decreasing function if and only if x ∈ `square`
The function f(x) = x3 - 3x is ______.
Prove that the function f(x) = tanx – 4x is strictly decreasing on `((-pi)/3, pi/3)`
The function f(x) = tanx – x ______.
In case of decreasing functions, slope of tangent and hence derivative is ____________.
Let h(x) = f(x) - [f(x)]2 + [f(x)]3 for every real number x. Then ____________.
Function given by f(x) = sin x is strictly increasing in.
The function f(x) = `(4x^3 - 3x^2)/6 - 2sinx + (2x - 1)cosx` ______.
If f(x) = x + cosx – a then ______.
Function f(x) = `log(1 + x) - (2x)/(2 + x)` is monotonically increasing when ______.
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
Find the interval/s in which the function f : R `rightarrow` R defined by f(x) = xex, is increasing.
In which one of the following intervals is the function f(x) = x3 – 12x increasing?