Advertisements
Advertisements
Question
Read the following passage:
The use of electric vehicles will curb air pollution in the long run. V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2` where t represents the time and t = 1, 2, 3, ...... corresponds to years 2001, 2002, 2003, ...... respectively. |
Based on the above information, answer the following questions:
- Can the above function be used to estimate number of vehicles in the year 2000? Justify. (2)
- Prove that the function V(t) is an increasing function. (2)
Solution
Given, the estimated of electric vehicles in use at any time t is given by
V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`
- No, the function cannot be used to calculate the number of vehicles in 2000.
As, t = 1, 2, 3, ... where starting year is 2001, 2002, 2003 ...
Therefore, it could not be used to calculate the year before 2001. - Here, V(t) = `1/5 t^3 - 5/2 t^2 + 25t - 2`
`(dV(t))/(dt) = 1/5 xx 3t^2 - 5/2 xx 2t + 25`
V'(t) = `3/5 t^2 - 5t + 25`
For the function to be increasing V'(t) > 0
Here, `3/2 t^2 - 5t + 25 > 0`
Hence, function V(t) > 0
So, it is an increasing function.
APPEARS IN
RELATED QUESTIONS
The amount of pollution content added in air in a city due to x-diesel vehicles is given by P(x) = 0.005x3 + 0.02x2 + 30x. Find the marginal increase in pollution content when 3 diesel vehicles are added and write which value is indicated in the above question.
Prove that the function f(x) = loge x is increasing on (0, ∞) ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 9x2 + 12x − 5 ?
Find the interval in which the following function are increasing or decreasing f(x) = 2x3 − 24x + 7 ?
Show that the function x2 − x + 1 is neither increasing nor decreasing on (0, 1) ?
State when a function f(x) is said to be increasing on an interval [a, b]. Test whether the function f(x) = x2 − 6x + 3 is increasing on the interval [4, 6] ?
Determine whether f(x) = −x/2 + sin x is increasing or decreasing on (−π/3, π/3) ?
Find the value(s) of a for which f(x) = x3 − ax is an increasing function on R ?
Show that f(x) = x + cos x − a is an increasing function on R for all values of a ?
Let f defined on [0, 1] be twice differentiable such that | f (x) | ≤ 1 for all x ∈ [0, 1]. If f(0) = f(1), then show that | f'(x) | < 1 for all x ∈ [ 0, 1] ?
Write the set of values of 'a' for which f(x) = loga x is decreasing in its domain ?
Find 'a' for which f(x) = a (x + sin x) + a is increasing on R ?
Find the set of values of 'a' for which f(x) = x + cos x + ax + b is increasing on R ?
The function \[f\left( x \right) = \log_e \left( x^3 + \sqrt{x^6 + 1} \right)\] is of the following types:
Function f(x) = 2x3 − 9x2 + 12x + 29 is monotonically decreasing when
Function f(x) = | x | − | x − 1 | is monotonically increasing when
If the function f(x) = x3 − 9kx2 + 27x + 30 is increasing on R, then
The function f(x) = x9 + 3x7 + 64 is increasing on
Find the values of x for which the function f(x) = x3 – 12x2 – 144x + 13 (a) increasing (b) decreasing
Find the value of x, such that f(x) is decreasing function.
f(x) = 2x3 – 15x2 – 84x – 7
Test whether the function f(x) = x3 + 6x2 + 12x − 5 is increasing or decreasing for all x ∈ R
Test whether the following function f(x) = 2 – 3x + 3x2 – x3, x ∈ R is increasing or decreasing
Find the values of x such that f(x) = 2x3 – 15x2 + 36x + 1 is increasing function
The function f(x) = 9 - x5 - x7 is decreasing for
The function f(x) = `(2x^2 - 1)/x^4`, x > 0, decreases in the interval ______.
The function f(x) = tan-1 x is ____________.
In `(0, pi/2),` the function f (x) = `"x"/"sin x"` is ____________.
The interval in which `y = x^2e^(-x)` is increasing with respect to `x` is
A function f is said to be increasing at a point c if ______.
Find the interval in which the function f(x) = x2e–x is strictly increasing or decreasing.