English

Read the following passage: Recent studies suggest the roughly 12% of the world population is left-handed.Depending upon the parents, the chances of having a left-handed child are as follows: - Mathematics

Advertisements
Advertisements

Question

Read the following passage:

Recent studies suggest the roughly 12% of the world population is left-handed.

Depending upon the parents, the chances of having a left-handed child are as follows:

A :  When both father and mother are left-handed:
Chances of left-handed child is 24%.
B :  When father is right-handed and mother is left-handed:
Chances of left-handed child is 22%.
C :  When father is left-handed and mother is right-handed:
Chances of left-handed child is 17%.
D :  When both father and mother are right-handed:
Chances of left-handed child is 9%.

Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed.

Based on the above information, answer the following questions:

  1. Find `P(L/C)` (1)
  2. Find `P(overlineL/A)` (1)
  3. (a) Find `P(A/L)` (2)
    OR
    (b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)
Sum

Solution

Given, P(L) = `12/100`

`P(L) P(overlineL) = 1 - 12/100 = 88/100`

and P(A) = P(B) = P(C) = P(D) = `1/4`

`P(L/A) = 24/100`,

`P(L/B) = 22/100`,

`P(L/C) = 17/100`,

`P(L/D) = 9/100`

(i) `P(L/C) = 17/100`, from the given data.

(ii) `P(overlineL/A) = (P(overlineL ∩ A))/(P(A))`

= `(P(A) - P(L ∩ A))/(P(A))`

= `1 - (P(L ∩ A))/(P(A))`

= `1 - P(L/A)`

= `1 - 24/100`

= `(100 - 24)/100`

= `76/100`

= `38/50`

= `19/25`

(iii) (a) `P(A/L) = (P(A ∩ L))/(P(L))`

But `P(L/A) = (P(A ∩ L))/(P(A))`

`24/100 = (P(A ∩ L))/(1/4)`

`\implies` P(A ∩ L) = `24/100 xx 1/4 = 6/100 = 3/50`

∴ `P(A/L) = (3/50)/(12/100) = (3 xx 100)/(12 xx 50) = 1/2`.

OR

(b) `P(L/(B ∪ C)) = (P[(L) ∩ (B ∪ C)])/(P(B ∪ C))`

= `(P[(L ∩ B) ∪ (L ∩ C)])/(P(B ∪ C))`

= `(P(L ∩ B) + P(L ∩ C) - P(L ∩ B)P(L ∩ C))/(P(B) + P(C) - P(B)P(C))`  ...(As they are independent)

= `(22/100 xx 1/4 + 17/100 xx 1/4 - 22/400 xx 17/400)/(1/4 + 1/4 - 1/4 xx 1/4)`

= `(22/400 + 17/400 - (22 xx 17)/(400 xx 400))/(1/2 - 1/16)`

= `((39/400 - 374/160000))/(1/2 - 1/16)`

= `16/7((39 xx 400 - 374)/160000)`

= `(16 xx 15226)/(7 xx 160000)`

= 0.217

= 0.22

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Outside Delhi Set 1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.


Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).


Determine P(E|F).

Two coins are tossed once, where 

E: no tail appears, F: no head appears


Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)


Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.


If P(A) = `1/2`,  P(B) = 0, then P(A|B) is ______.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if  A is a subset of B.


In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.


If A and B are events such as that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`, then find

1) P(A / B)

2) P(B / A)


An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


If P(A) = 0.5, P(B) = 0.8 and P(B/A) = 0.8, find P(A/B) and P(A ∪ B)


Choose the correct alternative:

A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2, 5/8`. The probability that the target is hit by A or B but not by C is


Choose the correct alternative:

A letter is taken at random from the letters of the word ‘ASSISTANT’ and another letter is taken at random from the letters of the word ‘STATISTICS’. The probability that the selected letters are the same is


In a multiple-choice question, there are three options out of which only one is correct. A person is guessing the answer at random. If there are 7 such questions, then the probability that he will get exactly 4 correct answers is ______ 


If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______ 


If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to ______.


A bag contains 3 red and 4 white balls and another bag contains 2 red and 3 white balls. If one ball is drawn from the first bag and 2 balls are drawn from the second bag, then find the probability that all three balls are of the same colour.


Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.


It is given that the events A and B are such that P(A) = `1/4, P(A/B) = 1/2` and `P(B/A) = 2/3`, then P(B) is equal to ______. 


If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.


A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.


Students of under graduation submitted a case study on “Understanding the Probability of Left-Handedness in Children Based on Parental Handedness”. Following Recent studies suggest that roughly 12% of the world population is left-handed. Depending on the parents’ handedness, the chances of having a left-handed child are as follows:

Scenario A: Both parents are left-handed, with a 24% chance of the child being left-handed.

Scenario B: The fathers is right-handed and the mothers left-handed, with a 22% chance of child being left-handed.

Scenario C: The fathers left-handed and the mother is right-handed, with a 17% chance of child being left-handed.

Scenario D: Both parents are right-handed, with a 9% chance of having a left-handed child.

Assuming that scenarios A, B, C and D are equally likely and L denotes the event that the child is left-handed, answer the following questions.

  1. What is the overall probability that a randomly selected child is left-handed?
  2. Given that exactly one parent is left-handed, what is the probability that a randomly selected child is left-handed?
  3. If a child is left-handed, what is the probability that both parents are left-handed?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×