English

If P(A) = 12, P(B) = 0, then P(A|B) is ______. - Mathematics

Advertisements
Advertisements

Question

If P(A) = `1/2`,  P(B) = 0, then P(A|B) is ______.

Options

  • 0

  • `1/2`

  • Not defined

  • 1

MCQ
Fill in the Blanks

Solution

If P(A) = `1/2`,  P(B) = 0, then P(A|B) is not defined.

Explanation:

P(A) = `1/2` and P(B) = 0

∴ P(A ∩ B) = 0

P(A|B) = `(P(A ∩ B))/(P(B))`

= `0/0`

not defined

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise 13.1 [Page 539]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 13 Probability
Exercise 13.1 | Q 16 | Page 539

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. Interpret the result and state which of the above stated methods is more beneficial for the patient.


An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.


Suppose that 80% of all families own a television set. If 5 families are interviewed at  random, find the probability that
a. three families own a television set.
b. at least two families own a television set.


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find  P(A ∪ B)


If `P(A) = 6/11, P(B) = 5/11 "and"  P(A ∪ B) = 7/11` find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(B|A)

Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)


Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if  A is a subset of B.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.


Suppose we have four boxes. A, B, C and D containing coloured marbles as given below:

Box Marble colour
  Red White Black
A 1 6 3
B 6 2 2
C 8 1 1
D 0 6 4

One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A?, box B?, box C?


A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both? 


A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, first is white and second is black?


Two cards are drawn one after the other from a pack of 52 cards without replacement. What is the probability that both the cards drawn are face cards?


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


Can two events be mutually exclusive and independent simultaneously?


If A and B are two events such that P(A ∪ B) = 0.7, P(A ∩ B) = 0.2, and P(B) = 0.5, then show that A and B are independent


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that one white and one black


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5


Choose the correct alternative:

A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2, 5/8`. The probability that the target is hit by A or B but not by C is


Choose the correct alternative:

A letter is taken at random from the letters of the word ‘ASSISTANT’ and another letter is taken at random from the letters of the word ‘STATISTICS’. The probability that the selected letters are the same is


A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______


Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.


Let A and B be two events. If P(A) = 0.2, P(B) = 0.4, P(A ∪ B) = 0.6, then P(A|B) is equal to ______.


If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals ______.


If P(A) = 0.4, P(B) = 0.8 and P(B|A) = 0.6, then P(A ∪ B) is equal to ______.


If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:


If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.


Three friends go to a restaurant to have pizza. They decide who will pay for the pizza by tossing a coin. It is decided that each one of them will toss a coin and if one person gets a different result (heads or tails) than the other two, that person would pay. If all three get the same result (all heads or all tails), they will toss again until they get a different result.

  1. What is the probability that all three friends will get the same result (all heads or all tails) in one round of tossing?
  2. What is the probability that they will get a different result in one round of tossing?
  3. What is the probability that they will need exactly four rounds of tossing to determine who would pay?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×