Advertisements
Advertisements
Question
An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.
Solution
`p=2/3, q=1-2/3=1/3, n=5`
`P(x<=3)=1-P(x>3)`
`=1-[P(4)-+P(5)]`
`=1-[""^5C_4(2/3)^4(1/3)^1+""^5C_5(2/3)^5]`
`=1-[5xx16/81xx1/3+1xx32/343]`
`=1-16/243xx7`
`=1-112/243`
`=(243-112)/243`
`=131/243`
`=0.539`
APPEARS IN
RELATED QUESTIONS
Assume that the chances of a patient having a heart attack is 40%. Assuming that a meditation and yoga course reduces the risk of heart attack by 30% and prescription of certain drug reduces its chance by 25%. At a time a patient can choose any one of the two options with equal probabilities. It is given that after going through one of the two options, the patient selected at random suffers a heart attack. Find the probability that the patient followed a course of meditation and yoga. Interpret the result and state which of the above stated methods is more beneficial for the patient.
The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses
A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.
Find the probability of B, given that A has already occurred.
Suppose that 80% of all families own a television set. If 5 families are interviewed at random, find the probability that
a. three families own a television set.
b. at least two families own a television set.
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A ∪ B)
Evaluate P(A ∪ B), if 2P(A) = P(B) = `5/13` and P(A | B) = `2/5`
Determine P(E|F).
Two coins are tossed once, where
E: tail appears on one coin, F: one coin shows head
Determine P(E|F).
Two coins are tossed once, where
E: no tail appears, F: no head appears
If P(A) = `1/2`, P(B) = 0, then P(A|B) is ______.
A die is tossed thrice. Find the probability of getting an odd number at least once.
If A and B are events such as that P(A) = `1/2`, P(B) = `1/3` and P(A ∩ B) = `1/4`, then find
1) P(A / B)
2) P(B / A)
A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both?
Five dice are thrown simultaneously. If the occurrence of an odd number in a single dice is considered a success, find the probability of maximum three successes.
Bag A contains 4 white balls and 3 black balls. While Bag B contains 3 white balls and 5 black balls. Two balls are drawn from Bag A and placed in Bag B. Then, what is the probability of drawing a white ball from Bag B?
An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement, What is the probability that at least one ball is black?
Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?
Select the correct option from the given alternatives :
Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II
If A and B are two independent events such that P(A ∪ B) = 0.6, P(A) = 0.2, find P(B)
If P(A) = 0.5, P(B) = 0.8 and P(B/A) = 0.8, find P(A/B) and P(A ∪ B)
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5
A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays
Choose the correct alternative:
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2, 5/8`. The probability that the target is hit by A or B but not by C is
In a multiple-choice question, there are three options out of which only one is correct. A person is guessing the answer at random. If there are 7 such questions, then the probability that he will get exactly 4 correct answers is ______
The total number of ways in which 5 balls of different colours can be distributed among 3 persons so that each person gets at least one ball is ______
Let A and B be two events. If P(A) = 0.2, P(B) = 0.4, P(A ∪ B) = 0.6, then P(A|B) is equal to ______.
If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.
If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is
For a biased dice, the probability for the different faces to turn up are
Face | 1 | 2 | 3 | 4 | 5 | 6 |
P | 0.10 | 0.32 | 0.21 | 0.15 | 0.05 | 0.17 |
The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.
Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.
If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.
Read the following passage:
Recent studies suggest the roughly 12% of the world population is left-handed.
Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed. |
Based on the above information, answer the following questions:
- Find `P(L/C)` (1)
- Find `P(overlineL/A)` (1)
- (a) Find `P(A/L)` (2)
OR
(b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)
A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.
Three friends go to a restaurant to have pizza. They decide who will pay for the pizza by tossing a coin. It is decided that each one of them will toss a coin and if one person gets a different result (heads or tails) than the other two, that person would pay. If all three get the same result (all heads or all tails), they will toss again until they get a different result.
- What is the probability that all three friends will get the same result (all heads or all tails) in one round of tossing?
- What is the probability that they will get a different result in one round of tossing?
- What is the probability that they will need exactly four rounds of tossing to determine who would pay?