Advertisements
Advertisements
Question
Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?
Solution
Total number of balls in the urn = 5 + 3 + 7 = 15
Out of these 12 are non-blue balls.
Two balls can be drawn from 15 balls without replacement in 15C2 = `(15xx14)/(1xx2)` = 105 ways
∴ n(S) =105
Let A be the event that at least one ball is blue.
i.e., 1 blue and other non-blue or both are blue.
∴ n(A) = 3C1 × 12C1 + 3C2
= 3 × 12 + 3
= 36 + 3
= 39
∴ P(A) = `("n"("A"))/("n"("S"))=39/105=13/35`
APPEARS IN
RELATED QUESTIONS
Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that
- the youngest is a girl.
- at least one is a girl.
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A ∪ B)
Determine P(E|F).
A coin is tossed three times, where
E: at least two heads, F: at most two heads
A die is tossed thrice. Find the probability of getting an odd number at least once.
Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that
- both balls are red.
- first ball is black and second is red.
- one of them is black and other is red.
In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.
Select the correct option from the given alternatives :
Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II
If A and B are two events such that P(A ∪ B) = 0.7, P(A ∩ B) = 0.2, and P(B) = 0.5, then show that A and B are independent
A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?
A year is selected at random. What is the probability that it contains 53 Sundays
Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?
Choose the correct alternative:
If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is
Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.
If P(A) = `4/5`, and P(A ∩ B) = `7/10`, then P(B|A) is equal to ______.
If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.
Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.
Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.
If the sum of numbers obtained on throwing a pair of dice is 9, then the probability that number obtained on one of the dice is 4, is ______.
If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.