English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time - Mathematics

Advertisements
Advertisements

Question

Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?

Sum

Solution

Given

Probability X hitting the target P(X) = `3/4`

Probability Y hitting the target P(Y) = `4/5`

Probability Z hitting the target P(Z) = `2/3`

`"P"(bar"X")` = 1 – P(X) = `1 - 3/4 = 1/4`

`"P"(bar"Y")` = 1 – P(Y) = `1 - 4/5 = 1/5`

`"P"(bar"Z")` = 1 – P(Z) = `1 - 2/3 = 1/3`

Probability hitting the target exactly by 2 hits

= `"P"[("X" ∩ "Y" ∩ bar"Z") ∪ (bar"X" ∩ "Y" ∩ "Z") ∪ ("X" ∩bar"Y" ∩ "Z")]`

= `"P"("X" ∩ "Y" ∩ bar"Z") + "P"(bar"X" ∩ "Y" ∩ "Z") + "P"("X" ∩bar"Y" ∩ "Z")`

= `"P"("X") "P"("Y") "P"(bar"Z") + "P"(bar"X") "P"("Y") "P"("Z") + "P"("X") "P"(bar"Y") "P"("Z")`

= `3/4 xx 4/5 xx 1/3 + 1/4 xx 4/5 xx 2/3 + 3/4 xx 1/5 xx 2/3`

= `(12 + 8 + 6)/60`

= `26/60`

= `13/30`

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to probability theory - Exercise 12.3 [Page 259]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 12 Introduction to probability theory
Exercise 12.3 | Q 12 | Page 259

RELATED QUESTIONS

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(A ∪ B)

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)


A black and a red dice are rolled. 

Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


Select the correct option from the given alternatives :

Bag I contains 3 red and 4 black balls while another Bag II contains 5 red and 6 black balls. One ball is drawn at random from one of the bags and it is found to be red. The probability that it was drawn from Bag II


If A and B are two events such that P(A ∪ B) = 0.7, P(A ∩ B) = 0.2, and P(B) = 0.5, then show that A and B are independent


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black


A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______


A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.


If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.


If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.


Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×