हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा ११

Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time - Mathematics

Advertisements
Advertisements

प्रश्न

Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?

योग

उत्तर

Given

Probability X hitting the target P(X) = `3/4`

Probability Y hitting the target P(Y) = `4/5`

Probability Z hitting the target P(Z) = `2/3`

`"P"(bar"X")` = 1 – P(X) = `1 - 3/4 = 1/4`

`"P"(bar"Y")` = 1 – P(Y) = `1 - 4/5 = 1/5`

`"P"(bar"Z")` = 1 – P(Z) = `1 - 2/3 = 1/3`

Probability hitting the target exactly by 2 hits

= `"P"[("X" ∩ "Y" ∩ bar"Z") ∪ (bar"X" ∩ "Y" ∩ "Z") ∪ ("X" ∩bar"Y" ∩ "Z")]`

= `"P"("X" ∩ "Y" ∩ bar"Z") + "P"(bar"X" ∩ "Y" ∩ "Z") + "P"("X" ∩bar"Y" ∩ "Z")`

= `"P"("X") "P"("Y") "P"(bar"Z") + "P"(bar"X") "P"("Y") "P"("Z") + "P"("X") "P"(bar"Y") "P"("Z")`

= `3/4 xx 4/5 xx 1/3 + 1/4 xx 4/5 xx 2/3 + 3/4 xx 1/5 xx 2/3`

= `(12 + 8 + 6)/60`

= `26/60`

= `13/30`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 12: Introduction to probability theory - Exercise 12.3 [पृष्ठ २५९]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 11 TN Board
अध्याय 12 Introduction to probability theory
Exercise 12.3 | Q 12 | पृष्ठ २५९

संबंधित प्रश्न

A fair coin is tossed five times. Find the probability that it shows exactly three times head.


A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.

Find the probability of B, given that A has already occurred.


Determine P(E|F).

A coin is tossed three times, where 

E: at least two heads, F: at most two heads


A die is tossed thrice. Find the probability of getting an odd number at least once.


If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?


A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.


 Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in subject I, if it is known that he is failed in subject II?


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


If A and B are two events such that P(A ∪ B) = 0.7, P(A ∩ B) = 0.2, and P(B) = 0.5, then show that A and B are independent


A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black


A year is selected at random. What is the probability that it contains 53 Sundays


Choose the correct alternative:

If A and B are any two events, then the probability that exactly one of them occur is


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


If the sum of numbers obtained on throwing a pair of dice is 9, then the probability that number obtained on one of the dice is 4, is ______.


If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.


A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×