Advertisements
Advertisements
प्रश्न
A year is selected at random. What is the probability that it contains 53 Sundays
उत्तर
Probability of year being a leap year = `1/4`
Probability of year being non – leap year = `3/4`
A non – leap year has 365 days.
365 days = 52 weeks + 1 day.
52 weeks contain 52 Sundays.
In order to get 53 Sundays in a non – leap year the remaining I day must be a Sunday.
Remaining one day may be Sunday or Monday or Tuesday or Wednesday or Thursday or Friday or Saturday.
Probability of getting Sunday from the remaining one day = `1/7`
A leap year has 366 days.
366 days = 52 weeks + 2 odd days
52 weeks contain 52 Sundays.
In order to get 53 Sundays in a leap year the remaining 2 days must contain a Sunday.
Remaining Two days may be
S = (Sunday, Monday), (Monday, Tuesday), (Tuesday, Wednesday), (Wednesday, Thursday), (Thursday, Friday ), ( Friday, Saturday), (Saturday, Sunday)}
n(S) = 7
Let A be the event set of getting a Sunday then
A = {(Sunday, Monday), ( Saturday , Sunday)}
n(A) = 2
P(getting a Sunday from the remaining 2 days)
= `("n"("A"))/("n"("S"))`
= `2/7`
P(getting 53 Sundays in a year) = P(getting a leap year) × P(getting a Sunday from the remaining 2 days) + P(getting a non-leap year) × P(getting a Sunday from the remaining 1 day)
= `1/4 xx 2/7 + 3/4 xx 1/7`
= `2/28+ 3/28`
= `(2 + 3)/28`
= `5/28`
∴ Probability of getting 53 Sundays in a year = `5/28`
APPEARS IN
संबंधित प्रश्न
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)
Determine P(E|F).
A coin is tossed three times, where
E: at least two heads, F: at most two heads
Determine P(E|F).
Two coins are tossed once, where
E: no tail appears, F: no head appears
A black and a red dice are rolled.
Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)
If P(A) = `1/2`, P(B) = 0, then P(A|B) is ______.
Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?
Two dice are thrown simultaneously, If at least one of the dice show a number 5, what is the probability that sum of the numbers on two dice is 9?
Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that one white and one black
Choose the correct alternative:
If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is
Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.
If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals ______.
If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:
For a biased dice, the probability for the different faces to turn up are
Face | 1 | 2 | 3 | 4 | 5 | 6 |
P | 0.10 | 0.32 | 0.21 | 0.15 | 0.05 | 0.17 |
The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.
Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.
If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.
A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.