English
Tamil Nadu Board of Secondary EducationHSC Science Class 11

A year is selected at random. What is the probability that it contains 53 Sundays - Mathematics

Advertisements
Advertisements

Question

A year is selected at random. What is the probability that it contains 53 Sundays

Sum

Solution

Probability of year being a leap year = `1/4`

Probability of year being non – leap year = `3/4`

A non – leap year has 365 days.

365 days = 52 weeks + 1 day.

52 weeks contain 52 Sundays.

In order to get 53 Sundays in a non – leap year the remaining I day must be a Sunday.

Remaining one day may be Sunday or Monday or Tuesday or Wednesday or Thursday or Friday or Saturday.

Probability of getting Sunday from the remaining one day = `1/7`

A leap year has 366 days.

366 days = 52 weeks + 2 odd days

52 weeks contain 52 Sundays.

In order to get 53 Sundays in a leap year the remaining 2 days must contain a Sunday.

Remaining Two days may be

S = (Sunday, Monday), (Monday, Tuesday), (Tuesday, Wednesday), (Wednesday, Thursday), (Thursday, Friday ), ( Friday, Saturday), (Saturday, Sunday)}

n(S) = 7

Let A be the event set of getting a Sunday then

A = {(Sunday, Monday), ( Saturday , Sunday)}

n(A) = 2

P(getting a Sunday from the remaining 2 days)

= `("n"("A"))/("n"("S"))`

= `2/7`

P(getting 53 Sundays in a year) = P(getting a leap year) × P(getting a Sunday from the remaining 2 days) + P(getting a non-leap year) × P(getting a Sunday from the remaining 1 day)

= `1/4 xx 2/7 + 3/4 xx 1/7`

= `2/28+ 3/28`

= `(2 + 3)/28`

= `5/28`

∴ Probability of getting 53 Sundays in a year = `5/28`

shaalaa.com
  Is there an error in this question or solution?
Chapter 12: Introduction to probability theory - Exercise 12.3 [Page 259]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 11 TN Board
Chapter 12 Introduction to probability theory
Exercise 12.3 | Q 11. (i) | Page 259

RELATED QUESTIONS

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that

  1. the youngest is a girl.
  2. at least one is a girl.

In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses


Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).


Determine P(E|F).

A coin is tossed three times, where 

E: at least two heads, F: at most two heads


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)


A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.


Box I contains two white and three black balls. Box II contains four white and one black balls and box III contains three white ·and four black balls. A dice having three red, two yellow and one green face, is thrown to select the box. If red face turns up, we pick up the box I, if a yellow face turns up we pick up box II, otherwise, we pick up box III. Then, we draw a ball from the selected box. If the ball is drawn is white, what is the probability that the dice had turned up with a red face?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?


If for two events A and B, P(A) = `3/4`, P(B) = `2/5`  and A ∪ B = S (sample space), find the conditional probability P(A/B)


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?


Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.


A year is selected at random. What is the probability that it is a leap year which contains 53 Sundays


Choose the correct alternative:

If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.


Three friends go to a restaurant to have pizza. They decide who will pay for the pizza by tossing a coin. It is decided that each one of them will toss a coin and if one person gets a different result (heads or tails) than the other two, that person would pay. If all three get the same result (all heads or all tails), they will toss again until they get a different result.

  1. What is the probability that all three friends will get the same result (all heads or all tails) in one round of tossing?
  2. What is the probability that they will get a different result in one round of tossing?
  3. What is the probability that they will need exactly four rounds of tossing to determine who would pay?

Students of under graduation submitted a case study on “Understanding the Probability of Left-Handedness in Children Based on Parental Handedness”. Following Recent studies suggest that roughly 12% of the world population is left-handed. Depending on the parents’ handedness, the chances of having a left-handed child are as follows:

Scenario A: Both parents are left-handed, with a 24% chance of the child being left-handed.

Scenario B: The fathers is right-handed and the mothers left-handed, with a 22% chance of child being left-handed.

Scenario C: The fathers left-handed and the mother is right-handed, with a 17% chance of child being left-handed.

Scenario D: Both parents are right-handed, with a 9% chance of having a left-handed child.

Assuming that scenarios A, B, C and D are equally likely and L denotes the event that the child is left-handed, answer the following questions.

  1. What is the overall probability that a randomly selected child is left-handed?
  2. Given that exactly one parent is left-handed, what is the probability that a randomly selected child is left-handed?
  3. If a child is left-handed, what is the probability that both parents are left-handed?

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×