English

In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random - Mathematics and Statistics

Advertisements
Advertisements

Question

In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?

Sum

Solution

Let A be the event that the student failed in Subject I
B be the event that the student failed in Subject II

Then P(A) = 30% = `30/100`

P(B) = 20% = `20/100`

And P(A ∩ B) = 10% = `10/100 `

P (student failed in at least one subject)
= P(A ∪ B) = P(A) + P(B) – P(A∩ B)

= `30/100 + 20/100 - 10/100`

= `40/100`

= 0.40

shaalaa.com
  Is there an error in this question or solution?
Chapter 7: Probability - Exercise 7.4 [Page 108]

APPEARS IN

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses


Determine P(E|F).

A coin is tossed three times, where 

E: at least two heads, F: at most two heads


A black and a red dice are rolled. 

Find the conditional probability of obtaining a sum greater than 9, given that the black die resulted in a 5.


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)


An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple-choice question?


A die is tossed thrice. Find the probability of getting an odd number at least once.


Five dice are thrown simultaneously. If the occurrence of an odd number in a single dice is considered a success, find the probability of maximum three successes.


Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.


A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?


From a pack of well-shuffled cards, two cards are drawn at random. Find the probability that both the cards are diamonds when first card drawn is kept aside


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?


A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______


Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.


Find the probability that in 10 throws of a fair die a score which is a multiple of 3 will be obtained in at least 8 of the throws.


If A and B are two events such that P(A) = `1/3`, P(B) = `1/5` and P(A ∪ B) = `1/2`, then P(A|B') + P(B|A') is equal to ______.


Read the following passage:

Recent studies suggest the roughly 12% of the world population is left-handed.

Depending upon the parents, the chances of having a left-handed child are as follows:

A :  When both father and mother are left-handed:
Chances of left-handed child is 24%.
B :  When father is right-handed and mother is left-handed:
Chances of left-handed child is 22%.
C :  When father is left-handed and mother is right-handed:
Chances of left-handed child is 17%.
D :  When both father and mother are right-handed:
Chances of left-handed child is 9%.

Assuming that P(A) = P(B) = P(C) = P(D) = `1/4` and L denotes the event that child is left-handed.

Based on the above information, answer the following questions:

  1. Find `P(L/C)` (1)
  2. Find `P(overlineL/A)` (1)
  3. (a) Find `P(A/L)` (2)
    OR
    (b) Find the probability that a randomly selected child is left-handed given that exactly one of the parents is left-handed. (2)

If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.


A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.


Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×