Advertisements
Advertisements
Question
In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?
Solution
Let A be the event that the student failed in Subject I
B be the event that the student failed in Subject II
Then P(A) = 30% = `30/100`
P(B) = 20% = `20/100`
And P(A ∩ B) = 10% = `10/100 `
P (student failed in exactly one subject)
= P(A) + P(B) – 2P(A ∩ B)
= `30/100+20/100-2(10/100)`
= `30/100`
= 0.30
APPEARS IN
RELATED QUESTIONS
A fair coin is tossed five times. Find the probability that it shows exactly three times head.
Evaluate P(A ∪ B), if 2P(A) = P(B) = `5/13` and P(A | B) = `2/5`
If `P(A) = 6/11, P(B) = 5/11 "and" P(A ∪ B) = 7/11` find
- P(A ∩ B)
- P(A|B)
- P(B|A)
Determine P(E|F).
A die is thrown three times,
E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.
If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?
In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.
A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?
The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5
Choose the correct alternative:
Let A and B be two events such that `"P"(bar ("A" ∪ "B")) = 1/6, "P"("A" ∩ "B") = 1/4` and `"P"(bar"A") = 1/4`. Then the events A and B are
A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______
If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals ______.
Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:
A bag contains 3 red and 4 white balls and another bag contains 2 red and 3 white balls. If one ball is drawn from the first bag and 2 balls are drawn from the second bag, then find the probability that all three balls are of the same colour.
For a biased dice, the probability for the different faces to turn up are
Face | 1 | 2 | 3 | 4 | 5 | 6 |
P | 0.10 | 0.32 | 0.21 | 0.15 | 0.05 | 0.17 |
The dice is tossed and it is told that either the face 1 or face 2 has shown up, then the probability that it is face 1, is ______.
Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.