Advertisements
Advertisements
Question
In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses
Solution
The man may get number greater than 4 in the first throw and then he quits the game. He may get a number less than equatl to 4 in the first throw and in the second throw he may get the number greater than 4 and quits the game.
In the first two throws he gets a number less than equal to 4 and in the third throw he may get a number greater than 6. He may not get number greater than 4 in any one of three throws.
Let X be the amount he wins/looses.
Then, X can take values -3, 3, 4, 5 such that
P (X = 5) = P(Getting number greater than 4 in first throw) = 1/3
P (X = 4) = P(Getting number less than equal to 4 in the first throw and number greater than 4 in second throw) `= 4/6×2/6=2/9`
P (X = 3) = P(Getting number less than equal to 4 in the first two throws and number greater than 4 in third throw) `= 4/6×4/6×2/6=4/27`
P (X = -3) = P(Getting number less than equal to 4 in all three throws) `= 4/6×4/6×4/6=8/27`
X | 5 | 4 | 3 | -3 |
P(X) |
`1/3` |
`2/9` |
`4/27` |
`8/27` |
`E (X) = (5×1/3)+4 (2/9)+3(4/27)−3 (8/27)`
`=1/27(45+24+12−24)`
`=57/27`
APPEARS IN
RELATED QUESTIONS
A fair coin is tossed five times. Find the probability that it shows exactly three times head.
An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.
A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.
Suppose that 80% of all families own a television set. If 5 families are interviewed at random, find the probability that
a. three families own a television set.
b. at least two families own a television set.
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find
- P(A ∩ B)
- P(A|B)
- P(A ∪ B)
If `P(A) = 6/11, P(B) = 5/11 "and" P(A ∪ B) = 7/11` find
- P(A ∩ B)
- P(A|B)
- P(B|A)
Determine P(E|F).
Mother, father and son line up at random for a family picture
E: son on one end, F: father in middle
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|G) and P (G|E)
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.
If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?
Suppose we have four boxes. A, B, C and D containing coloured marbles as given below:
Box | Marble colour | ||
Red | White | Black | |
A | 1 | 6 | 3 |
B | 6 | 2 | 2 |
C | 8 | 1 | 1 |
D | 0 | 6 | 4 |
One of the boxes has been selected at random and a single marble is drawn from it. If the marble is red, what is the probability that it was drawn from box A?, box B?, box C?
A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.
Box I contains two white and three black balls. Box II contains four white and one black balls and box III contains three white ·and four black balls. A dice having three red, two yellow and one green face, is thrown to select the box. If red face turns up, we pick up the box I, if a yellow face turns up we pick up box II, otherwise, we pick up box III. Then, we draw a ball from the selected box. If the ball is drawn is white, what is the probability that the dice had turned up with a red face?
Five dice are thrown simultaneously. If the occurrence of an odd number in a single dice is considered a success, find the probability of maximum three successes.
In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.
A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?
A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?
An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement, What is the probability that at least one ball is black?
Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?
Can two events be mutually exclusive and independent simultaneously?
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are independent events
A year is selected at random. What is the probability that it contains 53 Sundays
Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?
If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals ______.
If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:
Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.
If A and B are two events such that `P(A/B) = 2 xx P(B/A)` and P(A) + P(B) = `2/3`, then P(B) is equal to ______.
If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.