English

If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is: - Mathematics

Advertisements
Advertisements

Question

If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:

Options

  • `1/66`

  • `3/66`

  • `19/66`

  • `47/66`

MCQ

Solution

`47/66`

Explanation:

Given, Number of white balls = 3

Number of Black balls = 4

Number of Red balls = 5

Total no. of balls (ways) = 12

Total no. of ways of drawing 2 balls out of 12 balls

= 12C2

= `(12!)/(10!2!)`

= 66

Total no. of ways of drawing 2 balls of different colours

= 1 white 1 black + 1 black 1 red + 1 red 1 white

= 3C1 × 4C1 + 4C1 × 5C1 + 5C1 × 3C1

= 3 × 4 + 4 × 5 + 5 × 3

= 47

So, the probability of drawing 2 balls of different colours

= `47/66`

shaalaa.com
  Is there an error in this question or solution?
2021-2022 (April) Set 1

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find  P(A ∪ B)


Determine P(E|F).

A coin is tossed three times, where

E: head on third toss, F: heads on first two tosses


Determine P(E|F).

A coin is tossed three times, where

E: at most two tails, F: at least one tail


Determine P(E|F).

Two coins are tossed once, where 

E: no tail appears, F: no head appears


Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P ((E ∪ F)|G) and P ((E ∩ G)|G)


Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if A ∩ B = Φ.


A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.


If events A and B are independent, such that `P(A)= 3/5`,  `P(B)=2/3` 'find P(A ∪ B).


Bag A contains 4 white balls and 3 black balls. While Bag B contains 3 white balls and 5 black balls. Two balls are drawn from Bag A and placed in Bag B. Then, what is the probability of drawing a white ball from Bag B?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in subject I, if it is known that he is failed in subject II?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


Can two events be mutually exclusive and independent simultaneously?


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black


Choose the correct alternative:

Let A and B be two events such that `"P"(bar ("A" ∪ "B")) = 1/6, "P"("A" ∩ "B") = 1/4` and `"P"(bar"A") = 1/4`. Then the events A and B are


Choose the correct alternative:

A letter is taken at random from the letters of the word ‘ASSISTANT’ and another letter is taken at random from the letters of the word ‘STATISTICS’. The probability that the selected letters are the same is


In a multiple-choice question, there are three options out of which only one is correct. A person is guessing the answer at random. If there are 7 such questions, then the probability that he will get exactly 4 correct answers is ______ 


If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______ 


If P(A) = `4/5`, and P(A ∩ B) = `7/10`, then P(B|A) is equal to ______.


Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:


If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is


If the sum of numbers obtained on throwing a pair of dice is 9, then the probability that number obtained on one of the dice is 4, is ______.


A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×