English

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, Find P(A ∪ B) - Mathematics

Advertisements
Advertisements

Question

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find  P(A ∪ B)

Solution

It is given that P(A) = 0.8, P(B) = 0.5, and P(B|A) = 0.4

P(AB) = P(A) + P(B)  P(AB)

P(AB)=0.8 + 0.5  0.32 = 0.98

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise 13.1 [Page 538]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 13 Probability
Exercise 13.1 | Q 3.3 | Page 538

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

An insurance agent insures lives of 5 men, all of the same age and in good health. The probability that a man of this age will survive the next 30 years is known to be 2/3 . Find the probability that in the next 30 years at most 3 men will survive.


In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find

  1. P(A ∩ B)
  2. P(A|B)
  3. P(A ∪ B)

If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)


Determine P(E|F).

Two coins are tossed once, where 

E: tail appears on one coin, F: one coin shows head


Determine P(E|F).

Two coins are tossed once, where 

E: no tail appears, F: no head appears


Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


A die is tossed thrice. Find the probability of getting an odd number at least once.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that

  1. both balls are red.
  2. first ball is black and second is red.
  3. one of them is black and other is red.

A card is drawn from a well-shuffled pack of playing cards. What is the probability that it is either a spade or an ace or both? 


An urn contains 2 white and 2 black balls. A ball is drawn at random. If it is white, it is not replaced into the urn. Otherwise, it is replaced with another ball of the same colour. The process is repeated. Find the probability that the third ball is drawn is black.


Box I contains two white and three black balls. Box II contains four white and one black balls and box III contains three white ·and four black balls. A dice having three red, two yellow and one green face, is thrown to select the box. If red face turns up, we pick up the box I, if a yellow face turns up we pick up box II, otherwise, we pick up box III. Then, we draw a ball from the selected box. If the ball is drawn is white, what is the probability that the dice had turned up with a red face?


A box has 20 pens of which 2 are defective. Calculate the probability that out of 5 pens drawn one by one with replacement, at most 2 are defective.


 Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?


If events A and B are independent, such that `P(A)= 3/5`,  `P(B)=2/3` 'find P(A ∪ B).


A pair of dice is thrown. If sum of the numbers is an even number, what is the probability that it is a perfect square?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


Can two events be mutually exclusive and independent simultaneously?


If P(A) = 0.5, P(B) = 0.8 and P(B/A) = 0.8, find P(A/B) and P(A ∪ B)


A problem in Mathematics is given to three students whose chances of solving it are `1/3, 1/4` and `1/5`. What is the probability that exactly one of them will solve it?


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are mutually exclusive


A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______


If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______ 


Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.


Find the probability that in 10 throws of a fair die a score which is a multiple of 3 will be obtained in at least 8 of the throws.


Let A and B be two events. If P(A) = 0.2, P(B) = 0.4, P(A ∪ B) = 0.6, then P(A|B) is equal to ______.


If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.


Two cards are drawn out randomly from a pack of 52 cards one after the other, without replacement. The probability of first card being a king and second card not being a king is:


If P(A) = `1/2`, P(B) = 0, then `P(A/B)` is


A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is ______.


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.


If A and B are two independent events such that P(A) = `1/3` and P(B) = `1/4`, then `P(B^'/A)` is ______.


Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×