English

If P(A) = 25, P(B) = 310 and P(A ∩ B) = 15, then P(A|B).P(B'|A') is equal to ______. - Mathematics

Advertisements
Advertisements

Question

If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.

Options

  • `5/6`

  • `5/7`

  • `25/42`

  • 1

MCQ
Fill in the Blanks

Solution

If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to `25/42`.

Explanation:

Given that: P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`

P(A') = `1 - 2/5 = 3/5`

P(B') = `1 - 3/10 = 7/10`

And P(A' ∩ B') = 1 – P(A ∪ B)

= 1 – [P(A) + P(B) – P(A ∩ B)]

= `1 - [2/5 + 3/10 - 1/5]`

= `1 - [1/5 + 3/10]`

= `1 - 5/10`

= `1/2`

∴ `"P"("A'"/"B'") = ("P"("A'" ∩ "B'"))/("P"("B'"))`

= `(1/2)/(7/10)`

= `5/7`

And `"P"("B'"/"A'") = ("P"("A'" ∩ "B'"))/("P"("A'"))`

= `(1/2)/(3/5)`

= `5/6`

∴ `"P"("A'"/"B'")*"P"("B'"/"A'") = 5/7 xx 5/6`

= `25/42`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Probability - Exercise [Page 279]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 13 Probability
Exercise | Q 59 | Page 279

Video TutorialsVIEW ALL [2]

RELATED QUESTIONS

Assume that each born child is equally likely to be a boy or a girl. If a family has two children, what is the conditional probability that both are girls? Given that

  1. the youngest is a girl.
  2. at least one is a girl.

The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive


In a game, a man wins Rs 5 for getting a number greater than 4 and loses Rs 1 otherwise, when a fair die is thrown. The man decided to thrown a die thrice but to quit as and when he gets a number greater than 4. Find the expected value of the amount he wins/loses


A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.

Find the probability of B, given that A has already occurred.


Suppose that 80% of all families own a television set. If 5 families are interviewed at  random, find the probability that
a. three families own a television set.
b. at least two families own a television set.


Given that E and F are events such that P(E) = 0.6, P(F) = 0.3 and P(E ∩ F) = 0.2, find P (E|F) and P(F|E).


Determine P(E|F).

A coin is tossed three times, where 

E: at least two heads, F: at most two heads


A black and a red dice are rolled. 

Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.


A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)


Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if  A is a subset of B.


If a leap year is selected at random, what is the chance that it will contain 53 Tuesdays?


In a game, a man wins a rupee for a six and loses a rupee for any other number when a fair die is thrown. The man decided to throw a die thrice but to quit as and when he gets a six. Find the expected value of the amount he wins/loses.


If events A and B are independent, such that `P(A)= 3/5`,  `P(B)=2/3` 'find P(A ∪ B).


In a college, 70% of students pass in Physics, 75% pass in Mathematics and 10% of students fail in both. One student is chosen at random. What is the probability that:
(i) He passes in Physics and Mathematics?
(ii) He passes in Mathematics given that he passes in Physics.
(iii) He passes in Physics given that he passes in Mathematics.


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in exactly one subject?


Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?


Can two events be mutually exclusive and independent simultaneously?


If for two events A and B, P(A) = `3/4`, P(B) = `2/5`  and A ∪ B = S (sample space), find the conditional probability P(A/B)


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If the oil had to be changed, what is the probability that a new oil filter is needed?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are black


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that one white and one black


Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are independent events


Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.


If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:


Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×