मराठी

If P(A) = 25, P(B) = 310 and P(A ∩ B) = 15, then P(A|B).P(B'|A') is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.

पर्याय

  • `5/6`

  • `5/7`

  • `25/42`

  • 1

MCQ
रिकाम्या जागा भरा

उत्तर

If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to `25/42`.

Explanation:

Given that: P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`

P(A') = `1 - 2/5 = 3/5`

P(B') = `1 - 3/10 = 7/10`

And P(A' ∩ B') = 1 – P(A ∪ B)

= 1 – [P(A) + P(B) – P(A ∩ B)]

= `1 - [2/5 + 3/10 - 1/5]`

= `1 - [1/5 + 3/10]`

= `1 - 5/10`

= `1/2`

∴ `"P"("A'"/"B'") = ("P"("A'" ∩ "B'"))/("P"("B'"))`

= `(1/2)/(7/10)`

= `5/7`

And `"P"("B'"/"A'") = ("P"("A'" ∩ "B'"))/("P"("A'"))`

= `(1/2)/(3/5)`

= `5/6`

∴ `"P"("A'"/"B'")*"P"("B'"/"A'") = 5/7 xx 5/6`

= `25/42`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Probability - Exercise [पृष्ठ २७९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 13 Probability
Exercise | Q 59 | पृष्ठ २७९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.

Find the probability of B, given that A has already occurred.


40% students of a college reside in hostel and the remaining reside outside. At the end of the year, 50% of the hostelers got A grade while from outside students, only 30% got A grade in the examination. At the end of the year, a student of the college was chosen at random and was found to have gotten A grade. What is the probability that the selected student was a hosteler ?


If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find  P(A ∪ B)


Determine P(E|F).

A die is thrown three times,

E: 4 appears on the third toss, F: 6 and 5 appears respectively on first two tosses


A black and a red dice are rolled. 

Find the conditional probability of obtaining the sum 8, given that the red die resulted in a number less than 4.


An instructor has a question bank consisting of 300 easy True/False questions, 200 difficult True/False questions, 500 easy multiple choice questions and 400 difficult multiple choice questions. If a question is selected at random from the question bank, what is the probability that it will be an easy question given that it is a multiple-choice question?


Consider the experiment of throwing a die, if a multiple of 3 comes up, throw the die again and if any other number comes, toss a coin. Find the conditional probability of the event ‘the coin shows a tail’, given that ‘at least one die shows a 3’.


Two balls are drawn at random with replacement from a box containing 10 black and 8 red balls. Find the probability that

  1. both balls are red.
  2. first ball is black and second is red.
  3. one of them is black and other is red.

A and B are two events such that P (A) ≠ 0. Find P (B|A), if  A is a subset of B.


Five dice are thrown simultaneously. If the occurrence of an odd number in a single dice is considered a success, find the probability of maximum three successes.


If events A and B are independent, such that `P(A)= 3/5`,  `P(B)=2/3` 'find P(A ∪ B).


In an examination, 30% of students have failed in subject I, 20% of the students have failed in subject II and 10% have failed in both subject I and subject II. A student is selected at random, what is the probability that the student has failed in at least one subject?


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?


An urn contains 4 black, 5 white, and 6 red balls. Two balls are drawn one after the other without replacement, What is the probability that at least one ball is black?


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


If A and B are two independent events such that P(A ∪ B) = 0.6, P(A) = 0.2, find P(B)


The probability that a car being filled with petrol will also need an oil change is 0.30; the probability that it needs a new oil filter is 0.40; and the probability that both the oil and filter need changing is 0.15. If a new oil filter is needed, what is the probability that the oil has to be changed?


Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?


In a multiple-choice question, there are three options out of which only one is correct. A person is guessing the answer at random. If there are 7 such questions, then the probability that he will get exactly 4 correct answers is ______ 


If X denotes the number of ones in five consecutive throws of a dice, then P(X = 4) is ______ 


Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.


If P(A ∩ B) = `7/10` and P(B) = `17/20`, then P(A|B) equals ______.


A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.


A pack of cards has one card missing. Two cards are drawn randomly and are found to be spades. The probability that the missing card is not a spade, is ______.


Let A, B be two events such that the probability of A is `3/10` and conditional probability of A given B is `1/2`. The probability that exactly one of the events A or B happen equals.


If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.


Compute P(A|B), if P(B) = 0.5 and P (A ∩ B) = 0.32.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×