मराठी

If P(A) = 310, P(B) = 25 and P(A ∪ B) = 35, then P(B|A) + P(A|B) equals . - Mathematics

Advertisements
Advertisements

प्रश्न

If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals ______.

पर्याय

  • `1/4`

  • `1/3`

  • `5/12`

  • `7/12`

MCQ
रिकाम्या जागा भरा

उत्तर

If P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`, then P(B|A) + P(A|B) equals `7/12`.

Explanation:

Here, P(A) = `3/10`, P(B) = `2/5` and P(A ∪ B) = `3/5`

P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

⇒ `3/5 = 3/10 + 2/5` – P(A ∩ B)

⇒ P(A ∩ B) = `3/10 + 2/5 - 3/5`

= `(3 + 4 - 6)/10`

= `1/10`

Now `"P"("A"/"B") + "P"("B"/"A") = ("P"("A" ∩ "B"))/("P"("B")) + ("P"("A" ∩ "B"))/("P"("A"))`

= `(1/10)/(2/5) + (1/10)/(3/10)`

= `1/4 + 1/3`

= `7/12`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 13: Probability - Exercise [पृष्ठ २७९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
पाठ 13 Probability
Exercise | Q 58 | पृष्ठ २७९

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

The probability that a certain kind of component will survive a check test is 0.6. Find the probability that exactly 2 of the next 4 tested components survive


A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.

Find the probability of B, given that A has already occurred.


40% students of a college reside in hostel and the remaining reside outside. At the end of the year, 50% of the hostelers got A grade while from outside students, only 30% got A grade in the examination. At the end of the year, a student of the college was chosen at random and was found to have gotten A grade. What is the probability that the selected student was a hosteler ?


A bag X contains 4 white balls and 2 black balls, while another bag Y contains 3 white balls and 3 black balls. Two balls are drawn (without replacement) at random from one of the bags and were found to be one white and one black. Find the probability that the balls were drawn from bag Y.


Determine P(E|F).

Two coins are tossed once, where 

E: no tail appears, F: no head appears


Given that the two numbers appearing on throwing the two dice are different. Find the probability of the event ‘the sum of numbers on the dice is 4’.


If P(A) = `1/2`,  P(B) = 0, then P(A|B) is ______.


A and B are two events such that P (A) ≠ 0. Find P (B|A), if  A is a subset of B.


A die is thrown again and again until three sixes are obtained. Find the probability of obtaining the third six in the sixth throw of the die.


Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.


 Two balls are drawn from an urn containing 3 white, 5 red and 2 black balls, one by one without replacement. What is the probability that at least one ball is red?


If events A and B are independent, such that `P(A)= 3/5`,  `P(B)=2/3` 'find P(A ∪ B).


A bag contains 10 white balls and 15 black balls. Two balls are drawn in succession without replacement. What is the probability that, one is white and other is black?


Three fair coins are tossed. What is the probability of getting three heads given that at least two coins show heads?


Can two events be mutually exclusive and independent simultaneously?


One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that both are white


Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5


Choose the correct alternative:

Let A and B be two events such that `"P"(bar ("A" ∪ "B")) = 1/6, "P"("A" ∩ "B") = 1/4` and `"P"(bar"A") = 1/4`. Then the events A and B are


Choose the correct alternative:

If two events A and B are independent such that P(A) = 0.35 and P(A ∪ B) = 0.6, then P(B) is


In a multiple-choice question, there are three options out of which only one is correct. A person is guessing the answer at random. If there are 7 such questions, then the probability that he will get exactly 4 correct answers is ______ 


Two dice are thrown. Find the probability that the sum of numbers appearing is more than 11, is ______.


If P(A) = `2/5`, P(B) = `3/10` and P(A ∩ B) = `1/5`, then P(A|B).P(B'|A') is equal to ______.


If two balls are drawn from a bag containing 3 white, 4 black and 5 red balls. Then, the probability that the drawn balls are of different colours is:


A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.


Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?


Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.


If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.


If for any two events A and B, P(A) = `4/5` and P(A ∩ B) = `7/10`, then `P(B/A)` is equal to ______.


A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×