Advertisements
Advertisements
प्रश्न
A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that at least two of them will solve the problem.
उत्तर
Given probabilities of solving a problem by A, B and C are
P(A) = `1/2`,
P(B) = `1/3`
and P(C) = `1/4`
`\implies "P"(bar"A") = 1 - 1/2 = 1/2`,
`"P"(bar"B") = 1 - 1/3 = 2/3`
and `"P"(bar"C") = 1 - 1/4 = 3/4`
Probability of solving the problem by at least two of them
= `"P"("A")"P"("B")"P"(bar"C") + "P"("A")"P"(bar"B")"P"("C") + "P"(bar"A")"P"("B")"P"("C") + "P"("A")"P"("B")"P"("C")`
= `(1/2 xx 1/3 xx 3/4) + (1/2 xx 2/3 xx 1/4) + (1/2 xx 1/3 xx 1/4) + (1/2 xx 1/3 xx 1/4)`
= `(3 + 2 + 1 + 1)/24`
= `7/24`
APPEARS IN
संबंधित प्रश्न
A die is thrown three times. Events A and B are defined as below:
A : 5 on the first and 6 on the second throw.
B: 3 or 4 on the third throw.
Find the probability of B, given that A has already occurred.
If P(A) = 0.8, P(B) = 0.5 and P(B|A) = 0.4, find P(A|B)
Determine P(E|F).
Two coins are tossed once, where
E: no tail appears, F: no head appears
Determine P(E|F).
Mother, father and son line up at random for a family picture
E: son on one end, F: father in middle
A fair die is rolled. Consider events E = {1, 3, 5}, F = {2, 3} and G = {2, 3, 4, 5} Find P (E|F) and P (F|E)
A die is tossed thrice. Find the probability of getting an odd number at least once.
A and B are two events such that P (A) ≠ 0. Find P (B|A), if A is a subset of B.
Three cards are drawn at random (without replacement) from a well-shuffled pack of 52 playing cards. Find the probability distribution of the number of red cards. Hence, find the mean of the distribution.
Bag A contains 4 white balls and 3 black balls. While Bag B contains 3 white balls and 5 black balls. Two balls are drawn from Bag A and placed in Bag B. Then, what is the probability of drawing a white ball from Bag B?
Two balls are drawn from an urn containing 5 green, 3 blue, and 7 yellow balls one by one without replacement. What is the probability that at least one ball is blue?
One bag contains 5 white and 3 black balls. Another bag contains 4 white and 6 black balls. If one ball is drawn from each bag, find the probability that one white and one black
Two thirds of students in a class are boys and rest girls. It is known that the probability of a girl getting a first grade is 0.85 and that of boys is 0.70. Find the probability that a student chosen at random will get first grade marks.
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if A and B are mutually exclusive
Given P(A) = 0.4 and P(A ∪ B) = 0.7 Find P(B) if P(B/A) = 0.5
Suppose the chances of hitting a target by a person X is 3 times in 4 shots, by Y is 4 times in 5 shots, and by Z is 2 times in 3 shots. They fire simultaneously exactly one time. What is the probability that the target is damaged by exactly 2 hits?
Choose the correct alternative:
A, B, and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are `3/4, 1/2, 5/8`. The probability that the target is hit by A or B but not by C is
Choose the correct alternative:
Let A and B be two events such that `"P"(bar ("A" ∪ "B")) = 1/6, "P"("A" ∩ "B") = 1/4` and `"P"(bar"A") = 1/4`. Then the events A and B are
A die is thrown nine times. If getting an odd number is considered as a success, then the probability of three successes is ______
Three machines E1, E2, E3 in a certain factory produced 50%, 25% and 25%, respectively, of the total daily output of electric tubes. It is known that 4% of the tubes produced one each of machines E1 and E2 are defective, and that 5% of those produced on E3 are defective. If one tube is picked up at random from a day’s production, calculate the probability that it is defective.
A bag contains 6 red and 5 blue balls and another bag contains 5 red and 8 blue balls. A ball is drawn from the first bag and without noticing its colour is placed in the second bag. If a ball is drawn from the second bag, then find the probability that the drawn ball is red in colour.
Let A and B be two non-null events such that A ⊂ B. Then, which of the following statements is always correct?
If A and B are two events such that P(A) = `1/3`, P(B) = `1/5` and P(A ∪ B) = `1/2`, then P(A|B') + P(B|A') is equal to ______.
Bag I contains 3 red, 4 black and 3 white balls and Bag II contains 2 red, 5 black and 2 white balls. One ball is transferred from Bag I to Bag II and then a ball is draw from Bag II. The ball so drawn is found to be black in colour. Then the probability, that the transferred ball is red, is ______.
If A and B are two events such that `P(A/B) = 2 xx P(B/A)` and P(A) + P(B) = `2/3`, then P(B) is equal to ______.
If for two events A and B, P(A – B) = `1/5` and P(A) = `3/5`, then `P(B/A)` is equal to ______.
A Problem in Mathematics is given to the three students A, B and C. Their chances of solving the problem are `1/2, 1/3` and `1/4` respectively. Find the probability that exactly two students will solve the problem.
Students of under graduation submitted a case study on “Understanding the Probability of Left-Handedness in Children Based on Parental Handedness”. Following Recent studies suggest that roughly 12% of the world population is left-handed. Depending on the parents’ handedness, the chances of having a left-handed child are as follows:
Scenario A: Both parents are left-handed, with a 24% chance of the child being left-handed.
Scenario B: The fathers is right-handed and the mothers left-handed, with a 22% chance of child being left-handed.
Scenario C: The fathers left-handed and the mother is right-handed, with a 17% chance of child being left-handed.
Scenario D: Both parents are right-handed, with a 9% chance of having a left-handed child.
Assuming that scenarios A, B, C and D are equally likely and L denotes the event that the child is left-handed, answer the following questions.
- What is the overall probability that a randomly selected child is left-handed?
- Given that exactly one parent is left-handed, what is the probability that a randomly selected child is left-handed?
- If a child is left-handed, what is the probability that both parents are left-handed?